Patents by Inventor Jayaprakash Navaneedhakrishnan

Jayaprakash Navaneedhakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10886524
    Abstract: Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or “bulk” shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: January 5, 2021
    Assignee: Cornell University
    Inventors: Lynden A. Archer, Jayaprakash Navaneedhakrishnan
  • Patent number: 10418625
    Abstract: A reactor for producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including a reactor body capable of withstanding a pressure from about 1 atm to about 150 atm; and an inner sulfur-resistant layer at the inner surface of the reactor, wherein the inner layer is inert to sulfur vapor at a temperature from about 450° C. to about 1000° C.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: September 17, 2019
    Assignee: NOHMS Technologies, Inc.
    Inventors: Surya S. Moganty, Jayaprakash Navaneedhakrishnan, Jonathan Lee, Richard Delmerico, Nathan Ball, Emily McDonald
  • Publication number: 20180166681
    Abstract: Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or “bulk” shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.
    Type: Application
    Filed: January 25, 2018
    Publication date: June 14, 2018
    Inventors: Lynden A. Archer, Jayaprakash Navaneedhakrishnan
  • Patent number: 9882199
    Abstract: Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or “bulk” shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 30, 2018
    Assignee: Cornell University
    Inventors: Lynden A. Archer, Jayaprakash Navaneedhakrishnan
  • Publication number: 20170263923
    Abstract: In one aspect, a method of producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including providing a carbonaceous material; mixing elemental sulfur with the carbonaceous material; and heating the mixed sulfur and the carbonaceous material at a temperature from about 445° C. to about 1000° C. for a period of time and under a pressure greater than 1 atm to generate a sulfur vapor to infuse the carbonaceous material to result in a sulfur-infused carbonaceous material. In another aspect, a reactor for producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including a reactor body capable of withstanding a pressure from about 1 atm to about 150 atm; and an inner sulfur-resistant layer at the inner surface of the reactor, wherein the inner layer is inert to sulfur vapor at a temperature from about 450° C. to about 1000° C.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: Surya S. Moganty, Jayaprakash Navaneedhakrishnan, Jonathan Lee, Richard Delmerico, Nathan Ball, Emily McDonald
  • Publication number: 20140242457
    Abstract: An aluminum ion battery includes an aluminum anode, a vanadium oxide material cathode and an ionic liquid electrolyte. In particular, the vanadium oxide material cathode comprises a monocrystalline orthorhombic vanadium oxide material. The aluminum ion battery has an enhanced electrical storage capacity. A metal sulfide material may alternatively or additionally be included in the cathode.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 28, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Lynden A. Archer, Shyamal Kumar Das, Jayaprakash Navaneedhakrishnan
  • Publication number: 20140186695
    Abstract: In one aspect, a method of producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including providing a carbonaceous material; mixing elemental sulfur with the carbonaceous material; and heating the mixed sulfur and the carbonaceous material at a temperature from about 445° C. to about 1000° C. for a period of time and under a pressure greater than 1 atm to generate a sulfur vapor to infuse the carbonaceous material to result in a sulfur-infused carbonaceous material. In another aspect, a reactor for producing a sulfur-infused carbonaceous material as a cathode material for use in a Li—S battery is described, including a reactor body capable of withstanding a pressure from about 1 atm to about 150 atm; and an inner sulfur-resistant layer at the inner surface of the reactor, wherein the inner layer is inert to sulfur vapor at a temperature from about 450° C. to about 1000° C.
    Type: Application
    Filed: November 19, 2013
    Publication date: July 3, 2014
    Applicant: NANOPARTICLE ORGANIC HYBRID MATERIALS (NOHMS)
    Inventors: Surya S. MOGANTY, Jayaprakash NAVANEEDHAKRISHNAN, Jonathan LEE, Richard DELMERICO, Nathan BALL
  • Publication number: 20130330619
    Abstract: Sulfur containing nanoparticles that may be used within cathode electrodes within lithium ion batteries include in a first instance porous carbon shape materials (i.e., either nanoparticle shapes or “bulk” shapes that are subsequently ground to nanoparticle shapes) that are infused with a sulfur material. A synthetic route to these carbon and sulfur containing nanoparticles may use a template nanoparticle to form a hollow carbon shape shell, and subsequent dissolution of the template nanoparticle prior to infusion of the hollow carbon shape shell with a sulfur material. Sulfur infusion into other porous carbon shapes that are not hollow is also contemplated. A second type of sulfur containing nanoparticle includes a metal oxide material core upon which is located a shell layer that includes a vulcanized polymultiene polymer material and ion conducting polymer material. The foregoing sulfur containing nanoparticle materials provide the electrodes and lithium ion batteries with enhanced performance.
    Type: Application
    Filed: November 8, 2011
    Publication date: December 12, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: Lynden A. Archer, Jayaprakash Navaneedhakrishnan