Patents by Inventor Jayesh Bharathan

Jayesh Bharathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9666772
    Abstract: A light emitter includes a planar supporting surface, a light source positioned on the spreader region, and an encapsulant positioned on the spreader region to surround the light source. Except where constrained by adhesion to the planar supporting surface, the encapsulant is capable of expanding and contracting in response to a change in temperature so that forces caused by differences in the coefficient of thermal expansion between the different components is minimized. One or more reflective elements can be positioned proximate to the light source to increase the light emitting efficiency of the light emitter. The reflective elements can include a reflective layer on the spreader region and/or a reflective layer on a portion of the encapsulant.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 30, 2017
    Assignee: CREE, INC.
    Inventors: James Ibbetson, Jayesh Bharathan, Bernd Keller
  • Patent number: 8878209
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a Group III nitride-based light emitting region including a plurality of Group III nitride-based layers. A lenticular surface directly contacts one of the Group III nitride-based layers of the light emitting region. The lenticular surface includes a transparent material that is different from the Group III nitride-based layer of the light emitting region that the lenticular surface directly contacts.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: November 4, 2014
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David B. Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8759868
    Abstract: A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 ?. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: June 24, 2014
    Assignee: Cree, Inc.
    Inventors: Mark Raffetto, Jayesh Bharathan, Kevin Haberern, Michael Bergmann, David Emerson, James Ibbetson, Ting Li
  • Publication number: 20140167089
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a Group III nitride-based light emitting region including a plurality of Group III nitride-based layers. A lenticular surface directly contacts one of the Group III nitride-based layers of the light emitting region. The lenticular surface includes a transparent material that is different from the Group III nitride-based layer of the light emitting region that the lenticular surface directly contacts.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: Cree, Inc.
    Inventors: John Adam Edmond, David B. Slater, JR., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8692267
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region, and extending to said light emitting region.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8686460
    Abstract: A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 ?. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: April 1, 2014
    Assignee: Cree, Inc.
    Inventors: Mark Raffetto, Jayesh Bharathan, Kevin Haberern, Michael Bergmann, David Emerson, James Ibbetson, Ting Li
  • Patent number: 8183588
    Abstract: A light emitting diode is disclosed that includes a conductive substrate, a bonding metal on the conductive substrate and a barrier metal layer on the bonding metal. A mirror layer is encapsulated by the barrier metal layer and is isolated from the bonding metal by the barrier layer. A p-type gallium nitride epitaxial layer is on the encapsulated mirror, an indium gallium nitride active layer is on the p-type layer, and an n-type gallium nitride layer is on the indium gallium nitride layer, and a bond pad is made to the n-type gallium nitride layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 22, 2012
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8174037
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: May 8, 2012
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8154039
    Abstract: A light emitting diode is disclosed having a vertical orientation with an ohmic contact on portions of a top surface of the diode and a mirror layer adjacent the light emitting region of the diode. The diode includes an opening in the mirror layer beneath the geometric projection of the top ohmic contact through the diode that defines a non-contact area between the mirror layer and the light emitting region of the diode to encourage current flow to take place other than at the non-contact area to in turn decrease the number of light emitting recombinations beneath the ohmic contact and increase the number of light emitting recombinations in the more transparent portions of the diode.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 10, 2012
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, Jr., Jayesh Bharathan, Matthew Donofrio
  • Publication number: 20120080688
    Abstract: A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 ?. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 5, 2012
    Inventors: Mark Raffetto, Jayesh Bharathan, Kevin Haberern, Michael Bergmann, David Emerson, James Ibbetson, Ting Li
  • Patent number: 8089090
    Abstract: A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 ? and a specific contact resistivity less than about 10?3 ohm-cm2.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: January 3, 2012
    Assignee: Cree, Inc.
    Inventors: Mark Raffetto, Jayesh Bharathan, Kevin Haberern, Michael Bergmann, David Emerson, James Ibbetson, Ting Li
  • Publication number: 20110284875
    Abstract: A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a substrate selected from the group consisting of semiconducting and conducting materials, a Group III nitride-based light emitting region on or above the substrate, and, a lenticular surface containing silicon carbide on or above the light emitting region, and extending to said light emitting region.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 24, 2011
    Inventors: John Adam Edmond, David Beardsley Slater, JR., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 8044425
    Abstract: A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 ? and a specific contact resistivity less than about 10?3 ohm-cm2.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: October 25, 2011
    Assignee: Cree, Inc.
    Inventors: Mark Raffetto, Jayesh Bharathan, Kevin Haberern, Michael Bergmann, David Emerson, James Ibbetson, Ting Li
  • Patent number: 7679203
    Abstract: A method of forming a thermoelectric device may include forming a plurality of islands of thermoelectric material on a deposition substrate. The plurality of islands of thermoelectric material may be bonded to a header substrate so that the plurality of islands are between the deposition substrate and the header substrate. More particularly, the islands of thermoelectric material may be epitaxial islands of thermoelectric material having crystal structures aligned with a crystal structure of the deposition substrate. Related structures are also discussed.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: March 16, 2010
    Assignee: Nextreme Thermal Solutions, Inc.
    Inventors: Jayesh Bharathan, David A. Koester, Randall G. Alley, Rama Venkatasubramanian, Pratima Addepalli, Bing Shen, Cynthia Watkins
  • Patent number: 7608860
    Abstract: Light emitting device die having a mesa configuration on a substrate and an electrode on the mesa are attached to a submount in a flip-chip configuration by forming predefined pattern of conductive die attach material on at least one of the electrode and the submount and mounting the light emitting device die to the submount. The predefined pattern of conductive die attach material is selected so as to prevent the conductive die attach material from contacting regions of having opposite conductivity types when the light emitting device die is mounted to the submount. The predefined pattern of conductive die attach material may provide a volume of die attach material that is less than a volume defined by an area of the electrode and a distance between the electrode and the submount. Light emitting device dies having predefined patterns of conductive die attach material are also provided.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: October 27, 2009
    Assignees: Cree, Inc., Cree Microwave, LLC
    Inventors: David B. Slater, Jr., Jayesh Bharathan, John Edmond, Mark Raffetto, Anwar Mohammed, Peter S. Andrews, Gerald H. Negley
  • Publication number: 20090242918
    Abstract: A light emitting diode is disclosed that includes a conductive substrate, a bonding metal on the conductive substrate and a barrier metal layer on the bonding metal. A mirror layer is encapsulated by the barrier metal layer and is isolated from the bonding metal by the barrier layer. A p-type gallium nitride epitaxial layer is on the encapsulated mirror, an indium gallium nitride active layer is on the p-type layer, and an n-type gallium nitride layer is on the indium gallium nitride layer, and a bond pad is made to the n-type gallium nitride layer.
    Type: Application
    Filed: March 11, 2009
    Publication date: October 1, 2009
    Applicant: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, JR., Jayesh Bharathan, Matthew Donofrio
  • Publication number: 20090166659
    Abstract: A light emitting diode is disclosed having a vertical orientation with an ohmic contact on portions of a top surface of the diode and a mirror layer adjacent the light emitting region of the diode. The diode includes an opening in the mirror layer beneath the geometric projection of the top ohmic contact through the diode that defines a non-contact area between the mirror layer and the light emitting region of the diode to encourage current flow to take place other than at the non-contact area to in turn decrease the number of light emitting recombinations beneath the ohmic contact and increase the number of light emitting recombinations in the more transparent portions of the diode.
    Type: Application
    Filed: March 11, 2009
    Publication date: July 2, 2009
    Applicant: Cree, Inc.
    Inventors: John Adam Edmond, David Beardsley Slater, JR., Jayesh Bharathan, Matthew Donofrio
  • Patent number: 7341175
    Abstract: Bonding of flip-chip mounted light emitting devices having an irregular configuration is provided. Light emitting diodes having a shaped substrate are bonded to a submount by applying forces to the substrate an a manner such that shear forces within the substrate do not exceed a failure threshold of the substrate. Bonding a light emitting diode to a submount may be provided by applying force to a surface of a substrate of the light emitting diode that is oblique to a direction of motion of the light emitting diode to thermosonically bond the light emitting diode to the submount. Collets for use in bonding shaped substrates to a submount and systems for bonding shaped substrates to a submount are also provided.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: March 11, 2008
    Assignee: Cree, Inc.
    Inventors: David B. Slater, Jr., Jayesh Bharathan, John Edmond, Mark Raffetto, Anwar Mohammed, Peter S. Andrews, Gerald H. Negley
  • Publication number: 20070241360
    Abstract: Light emitting device die having a mesa configuration on a substrate and an electrode on the mesa are attached to a submount in a flip-chip configuration by forming predefined pattern of conductive die attach material on at least one of the electrode and the submount and mounting the light emitting device die to the submount. The predefined pattern of conductive die attach material is selected so as to prevent the conductive die attach material from contacting regions of having opposite conductivity types when the light emitting device die is mounted to the submount. The predefined pattern of conductive die attach material may provide a volume of die attach material that is less than a volume defined by an area of the electrode and a distance between the electrode and the submount. Light emitting device dies having predefined patterns of conductive die attach material are also provided.
    Type: Application
    Filed: July 2, 2007
    Publication date: October 18, 2007
    Inventors: David Slater, Jr., Jayesh Bharathan, John Edmond, Mark Raffetto, Anwar Mohammed, Peter Andrews, Gerald Negley
  • Publication number: 20070215194
    Abstract: A method of forming a thermoelectric device may include forming a plurality of islands of thermoelectric material on a deposition substrate. The plurality of islands of thermoelectric material may be bonded to a header substrate so that the plurality of islands are between the deposition substrate and the header substrate. More particularly, the islands of thermoelectric material may be epitaxial islands of thermoelectric material having crystal structures aligned with a crystal structure of the deposition substrate. Related structures are also discussed.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 20, 2007
    Inventors: Jayesh Bharathan, David Koester, Randall Alley, Rama Venkatasubramanian, Pratima Addepalli, Bing Shen, Cynthia Watkins