Patents by Inventor Jayram Moorkanikara Nageswaran

Jayram Moorkanikara Nageswaran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230350420
    Abstract: Systems and methods for precisely estimating a robotic footprint for execution of near-collision motions are disclosed herein. According to at least one non-limiting exemplary embodiment, a robot may switch from using a computer readable map to a sensor which senses at least a portion of the robot to navigate close by objects.
    Type: Application
    Filed: June 28, 2023
    Publication date: November 2, 2023
    Inventors: Kajal Gada, Abdolhamid Badiozamani, Oleg Sinavski, Jayram Moorkanikara-Nageswaran
  • Publication number: 20220163644
    Abstract: Systems and methods for filtering underestimated distance measurements from pulse-modulated time of flight sensor are disclosed herein. According to at least one non-limiting exemplary embodiment, a cluster of pixels in a depth image may be identified as having incorrect distance measurements based on a set of pre-defined criteria disclosed herein. The incorrect distance measurements may be filtered from the image such that robots using depth cameras do not perceive objects as being substantially close to the robots when no objects are present.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 26, 2022
    Inventor: Jayram Moorkanikara-Nageswaran
  • Patent number: 11340630
    Abstract: Systems and methods for robotic mapping are disclosed. In some example implementations, an automated device can travel in an environment. From travelling in the environment, the automated device can create a graph comprising a plurality of nodes, wherein each node corresponds to a scan taken by one or more sensors of the automated device at a location in the environment. In some example embodiments, the automated device can reevaluate its travel along a desired path if it encounters objects or obstructions along its path, whether those objects or obstructions are present in the front, rare or side of the automated device. In some example embodiments, the automated device uses a timestamp methodology to maneuver around its environment that provides faster processing and less usage of memory space.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: May 24, 2022
    Assignee: Brain Corporation
    Inventors: Jayram Moorkanikara Nageswaran, Oleg Sinyavskiy, Borja Ibarz Gabardos
  • Patent number: 10967519
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: April 6, 2021
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Publication number: 20200086494
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 19, 2020
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 10464213
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: November 5, 2019
    Assignee: Brain Corporation
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Publication number: 20190302791
    Abstract: Systems and methods for robotic mapping are disclosed. In some example implementations, an automated device can travel in an environment. From travelling in the environment, the automated device can create a graph comprising a plurality of nodes, wherein each node corresponds to a scan taken by one or more sensors of the automated device at a location in the environment. In some example embodiments, the automated device can reevaluate its travel along a desired path if it encounters objects or obstructions along its path, whether those objects or obstructions are present in the front, rare or side of the automated device. In some example embodiments, the automated device uses a timestamp methodology to maneuver around its environment that provides faster processing and less usage of memory space.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Inventors: Jayram Moorkanikara Nageswaran, Oleg Sinyavskiy, Borja Ibarz Gabardos
  • Publication number: 20190061160
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Application
    Filed: June 4, 2018
    Publication date: February 28, 2019
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 10210452
    Abstract: Apparatus and methods for high-level neuromorphic network description (HLND) framework that may be configured to enable users to define neuromorphic network architectures using a unified and unambiguous representation that is both human-readable and machine-interpretable. The framework may be used to define nodes types, node-to-node connection types, instantiate node instances for different node types, and to generate instances of connection types between these nodes. To facilitate framework usage, the HLND format may provide the flexibility required by computational neuroscientists and, at the same time, provides a user-friendly interface for users with limited experience in modeling neurons. The HLND kernel may comprise an interface to Elementary Network Description (END) that is optimized for efficient representation of neuronal systems in hardware-independent manner and enables seamless translation of HLND model description into hardware instructions for execution by various processing modules.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 19, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Botond Szatmary, Eugene M. Izhikevich, Csaba Petre, Jayram Moorkanikara Nageswaran, Filip Piekniewski
  • Patent number: 9987752
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: June 5, 2018
    Assignee: BRAIN CORPORATION
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Publication number: 20170355081
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene lzhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 9218563
    Abstract: Apparatus and methods for salient feature detection by a spiking neuron network. The network may comprise feature-specific units capable of responding to different objects (red and green color). The plasticity mechanism of the network may be configured based on difference between two similarity measures related to activity of different unit types obtained during network training. One similarity measure may be based on activity of units of the same type (red). Another similarity measure may be based on activity of units of one type (red) and another type (green). Similarity measures may comprise a cross-correlogram and/or mutual information determined over an activity window. During network operation, the activity based plasticity mechanism may be used to potentiate connections between units of the same type (red-red). The plasticity mechanism may be used to depress connections between units of different types (red-green). The plasticity mechanism may effectuate detection of salient features in the input.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: December 22, 2015
    Assignee: Brain Corporation
    Inventors: Botond Szatmary, Micah Richert, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, Filip Piekniewski, Sach Sokol, Csaba Petre
  • Patent number: 9165245
    Abstract: Apparatus and methods for partial evaluation of synaptic updates in neural networks. In one embodiment, a pre-synaptic unit is connected to a several post synaptic units via communication channels. Information related to a plurality of post-synaptic pulses generated by the post-synaptic units is stored by the network in response to a system event. Synaptic channel updates are performed by the network using the time intervals between a pre-synaptic pulse, which is being generated prior to the system event, and at least a portion of the plurality of the post synaptic pulses. The system event enables removal of the information related to the portion of the post-synaptic pulses from the storage device. A shared memory block within the storage device is used to store data related to post-synaptic pulses generated by different post-synaptic nodes. This configuration enables memory use optimization of post-synaptic units with different firing rates.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: October 20, 2015
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Eugene M. Izhikevich, Filip Piekniewski, Jayram Moorkanikara Nageswaran, Jeffrey Alexander Levin, Venkat Rangan, Erik Christopher Malone
  • Patent number: 9147156
    Abstract: Apparatus and methods for efficient synaptic update in a network such as a spiking neural network. In one embodiment, the post-synaptic updates, in response to generation of a post-synaptic pulse by a post-synaptic unit, are delayed until a subsequent pre-synaptic pulse is received by the unit. Pre-synaptic updates are performed first following by the post-synaptic update, thus ensuring synaptic connection status is up-to-date. The delay update mechanism is used in conjunction with system “flush” events in order to ensure accurate network operation, and prevent loss of information under a variety of pre-synaptic and post-synaptic unit firing rates. A large network partition mechanism is used in one variant with network processing apparatus in order to enable processing of network signals in a limited functionality embedded hardware environment.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 29, 2015
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Eugene M. Izhikevich, Filip Piekniewski, Jayram Moorkanikara Nageswaran, Jeffrey Alexander Levin, Venkat Rangan, Erik Christopher Malone
  • Patent number: 9122994
    Abstract: Object recognition apparatus and methods useful for extracting information from an input signal. In one embodiment, the input signal is representative of an element of an image, and the extracted information is encoded into patterns of pulses. The patterns of pulses are directed via transmission channels to a plurality of detector nodes configured to generate an output pulse upon detecting an object of interest. Upon detecting a particular object, a given detector node elevates its sensitivity to that particular object when processing subsequent inputs. In one implementation, one or more of the detector nodes are also configured to prevent adjacent detector nodes from generating detection signals in response to the same object representation. The object recognition apparatus modulates properties of the transmission channels by promoting contributions from channels carrying information used in object recognition.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 1, 2015
    Assignee: Brain Corporation
    Inventors: Filip Lukasz Piekniewski, Csaba Petre, Sach Hansen Sokol, Botond Szatmary, Jayram Moorkanikara Nageswaran, Eugene M. Izhikevich
  • Patent number: 9117176
    Abstract: Apparatus and methods for high-level neuromorphic network description (HLND) framework that may be configured to enable users to define neuromorphic network architectures using a unified and unambiguous representation that is both human-readable and machine-interpretable. The framework may be used to define nodes types, node-to-node connection types, instantiate node instances for different node types, and to generate instances of connection types between these nodes. To facilitate framework usage, the HLND format may provide the flexibility required by computational neuroscientists and, at the same time, provides a user-friendly interface for users with limited experience in modeling neurons. The HLND kernel may comprise an interface to Elementary Network Description (END) that is optimized for efficient representation of neuronal systems in hardware-independent manner and enables seamless translation of HLND model description into hardware instructions for execution by various processing modules.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: August 25, 2015
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Botond Szatmary, Eugene M. Izhikevich, Csaba Petre, Jayram Moorkanikara Nageswaran, Filip Piekniewski
  • Patent number: 9104973
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Neuronal network and methods for operating neuronal networks comprise a plurality of units, where each unit has a memory and a plurality of doublets, each doublet being connected to a pair of the plurality of units. Execution of unit update rules for the plurality of units is order-independent and execution of doublet event rules for the plurality of doublets is order-independent.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: August 11, 2015
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Jayram Moorkanikara Nageswaran, Filip Piekniewski
  • Patent number: 9092738
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 28, 2015
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Filip Piekniewski, Jayram Moorkanikara Nageswaran
  • Publication number: 20140372355
    Abstract: Apparatus and methods for partial evaluation of synaptic updates in neural networks. In one embodiment, a pre-synaptic unit is connected to a several post synaptic units via communication channels. Information related to a plurality of post-synaptic pulses generated by the post-synaptic units is stored by the network in response to a system event. Synaptic channel updates are performed by the network using the time intervals between a pre-synaptic pulse, which is being generated prior to the system event, and at least a portion of the plurality of the post synaptic pulses. The system event enables removal of the information related to the portion of the post-synaptic pulses from the storage device. A shared memory block within the storage device is used to store data related to post-synaptic pulses generated by different post-synaptic nodes. This configuration enables memory use optimization of post-synaptic units with different firing rates.
    Type: Application
    Filed: May 12, 2014
    Publication date: December 18, 2014
    Applicant: BRAIN Corporation
    Inventors: Eugene M. Izhikevich, Filip Piekniewski, Jayram Moorkanikara Nageswaran
  • Publication number: 20140250036
    Abstract: A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. The software and hardware engines are optimized to take into account short-term and long-term synaptic plasticity in the form of LTD, LTP, and STDP.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 4, 2014
    Applicant: BRAIN CORPORATION
    Inventors: Eugene M. Izhikevich, Botond Szatmary, Csaba Petre, Filip Piekniewski, Jayram Moorkanikara Nageswaran