Patents by Inventor Jean Augustin Yiptong

Jean Augustin Yiptong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080012004
    Abstract: A spintronic device may include at least one superlattice and at least one electrical contact coupled thereto, with the at least one superlattice including a plurality of groups of layers. Each group of layers may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion having a crystal lattice, at least one non-semiconductor monolayer constrained within the crystal lattice of adjacent base semiconductor portions, and a spintronic dopant. The spintronic dopant may be constrained within the crystal lattice of the base semiconductor portion by the at least one non-semiconductor monolayer. In some embodiments, the repeating structure of a superlattice may not be needed.
    Type: Application
    Filed: March 16, 2007
    Publication date: January 17, 2008
    Inventors: Xiangyang Huang, Samed Halilov, Jean Augustin Yiptong, Ilija Dukovski, Marek Hytha, Robert Mears
  • Publication number: 20070194298
    Abstract: A semiconductor device may include a first monocrystalline layer comprising a first material having a first lattice constant. A second monocrystalline layer may include a second material having a second lattice constant different than the first lattice constant. The device may also include a lattice matching layer between the first and second monocrystalline layers and comprising a superlattice. The superlattice may include a plurality of groups of layers, and each group of layers may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween.
    Type: Application
    Filed: February 21, 2007
    Publication date: August 23, 2007
    Applicant: RJ Mears, LLC
    Inventors: Ilija Dukovski, Robert Stephenson, Jean Augustin Yiptong, Samed Halilov, Robert Mears, Xiangyang Huang, Marek Hytha
  • Publication number: 20070166928
    Abstract: A method for making an electronic device may include forming a selectively polable superlattice comprising a plurality of stacked groups of layers. Each group of layers of the selectively polable superlattice may include a plurality of stacked semiconductor monolayers defining a semiconductor base portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent silicon portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the selectively polable superlattice for selective poling thereof.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 19, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20070161138
    Abstract: A method for making an electronic device may include forming a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The method may further include coupling at least one electrode to the poled superlattice.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 12, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20070158640
    Abstract: An electronic device may include a poled superlattice comprising a plurality of stacked groups of layers and having a net electrical dipole moment. Each group of layers of the poled superlattice may include a plurality of stacked semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer thereon. The at least one non-semiconductor monolayer may be constrained within a crystal lattice of adjacent base semiconductor portions, and at least some semiconductor atoms from opposing base semiconductor portions may be chemically bound together through the at least one non-semiconductor monolayer therebetween. The electronic device may further include at least one electrode coupled to the poled superlattice.
    Type: Application
    Filed: December 21, 2006
    Publication date: July 12, 2007
    Applicant: RJ Mears, LLC
    Inventors: Samed Halilov, Xiangyang Huang, Ilija Dukovski, Jean Augustin Yiptong, Robert Mears, Marek Hytha, Robert Stephenson
  • Publication number: 20060019454
    Abstract: A method for making a semiconductor device may include forming a superlattice comprising a plurality of stacked groups of layers adjacent a substrate. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a high-K dielectric layer on the electrode layer, and forming an electrode layer on the high-K dielectric layer and opposite the superlattice.
    Type: Application
    Filed: May 25, 2005
    Publication date: January 26, 2006
    Applicant: RJ Mears, LLC
    Inventors: Robert Mears, Marek Hytha, Scott Kreps, Robert Stephenson, Jean Augustin Yiptong, Ilija Dukovski, Kalipatnam Rao, Samed Halilov, Xiangyang Huang