Patents by Inventor Jean-Baptiste Passot
Jean-Baptiste Passot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9789605Abstract: Robots have the capacity to perform a broad range of useful tasks, such as factory automation, cleaning, delivery, assistive care, environmental monitoring and entertainment. Enabling a robot to perform a new task in a new environment typically requires a large amount of new software to be written, often by a team of experts. It would be valuable if future technology could empower people, who may have limited or no understanding of software coding, to train robots to perform custom tasks. Some implementations of the present invention provide methods and systems that respond to users' corrective commands to generate and refine a policy for determining appropriate actions based on sensor-data input. Upon completion of learning, the system can generate control commands by deriving them from the sensory data. Using the learned control policy, the robot can behave autonomously.Type: GrantFiled: June 6, 2016Date of Patent: October 17, 2017Assignee: BRAIN CORPORATIONInventors: Philip Meier, Jean-Baptiste Passot, Borja Ibarz Gabardos, Patryk Laurent, Oleg Sinyavskiy, Peter O'Connor, Eugene Izhikevich
-
Publication number: 20170266805Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.Type: ApplicationFiled: March 30, 2017Publication date: September 21, 2017Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot
-
Patent number: 9764468Abstract: Apparatus and methods for training and operating of robotic devices. Robotic controller may comprise a predictor apparatus configured to generate motor control output. The predictor may be operable in accordance with a learning process based on a teaching signal comprising the control output. An adaptive controller block may provide control output that may be combined with the predicted control output. The predictor learning process may be configured to learn the combined control signal. Predictor training may comprise a plurality of trials. During initial trial, the control output may be capable of causing a robot to perform a task. During intermediate trials, individual contributions from the controller block and the predictor may be inadequate for the task. Upon learning, the control knowledge may be transferred to the predictor so as to enable task execution in absence of subsequent inputs from the controller. Control output and/or predictor output may comprise multi-channel signals.Type: GrantFiled: March 15, 2013Date of Patent: September 19, 2017Assignee: Brain CorporationInventors: Eugene Izhikevich, Oleg Sinyavskiy, Jean-Baptiste Passot
-
Publication number: 20170203437Abstract: Apparatus and methods for training and controlling of e.g., robotic devices. In one implementation, a robot may be utilized to perform a target task characterized by a target trajectory. The robot may be trained by a user using supervised learning. The user may interface to the robot, such as via a control apparatus configured to provide a teaching signal to the robot. The robot may comprise an adaptive controller comprising a neuron network, which may be configured to generate actuator control commands based on the user input and output of the learning process. During one or more learning trials, the controller may be trained to navigate a portion of the target trajectory. Individual trajectory portions may be trained during separate training trials. Some portions may be associated with robot executing complex actions and may require additional training trials and/or more dense training input compared to simpler trajectory actions.Type: ApplicationFiled: February 13, 2017Publication date: July 20, 2017Inventors: Jean-Baptiste Passot, Oleg Sinyavskiy, Eugene Izhikevich
-
Patent number: 9579789Abstract: Apparatus and methods for arbitration of control signals for robotic devices. A robotic device may comprise an adaptive controller comprising a plurality of predictors configured to provide multiple predicted control signals based on one or more of the teaching input, sensory input, and/or performance. The predicted control signals may be configured to cause two or more actions that may be in conflict with one another and/or utilize a shared resource. An arbitrator may be employed to select one of the actions. The selection process may utilize a WTA, reinforcement, and/or supervisory mechanisms in order to inhibit one or more predicted signals. The arbitrator output may comprise target state information that may be provided to the predictor block. Prior to arbitration, the predicted control signals may be combined with inputs provided by an external control entity in order to reduce learning time.Type: GrantFiled: September 27, 2013Date of Patent: February 28, 2017Assignee: Brain CorporationInventors: Jean-Baptiste Passot, Patryk Laurent, Eugene Izhikevich
-
Patent number: 9566710Abstract: Apparatus and methods for training and controlling of e.g., robotic devices. In one implementation, a robot may be utilized to perform a target task characterized by a target trajectory. The robot may be trained by a user using supervised learning. The user may interface to the robot, such as via a control apparatus configured to provide a teaching signal to the robot. The robot may comprise an adaptive controller comprising a neuron network, which may be configured to generate actuator control commands based on the user input and output of the learning process. During one or more learning trials, the controller may be trained to navigate a portion of the target trajectory. Individual trajectory portions may be trained during separate training trials. Some portions may be associated with robot executing complex actions and may require additional training trials and/or more dense training input compared to simpler trajectory actions.Type: GrantFiled: November 1, 2013Date of Patent: February 14, 2017Assignee: BRAIN CORPORATIONInventors: Jean-Baptiste Passot, Oleg Sinyavskiy, Eugene Izhikevich
-
Publication number: 20170001309Abstract: Apparatus and methods for training of robotic devices. Robotic devices may be trained by a user guiding the robot along target trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the user guidance, sensory input, and/or performance measure. Training may comprise a plurality of trials. During first trial, the user input may be sufficient to cause the robot to complete the trajectory. During subsequent trials, the user and the robot's controller may collaborate so that user input may be reduced while the robot control may be increased. Individual contributions from the user and the robot controller during training may be may be inadequate (when used exclusively) to complete the task.Type: ApplicationFiled: July 1, 2016Publication date: January 5, 2017Inventors: Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Patryk Laurent, Borja Ibarz Gabardos, Eugene Izhikevich
-
Patent number: 9533413Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.Type: GrantFiled: March 13, 2014Date of Patent: January 3, 2017Assignee: Brain CorporationInventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
-
Publication number: 20160303738Abstract: Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.Type: ApplicationFiled: April 18, 2016Publication date: October 20, 2016Inventors: Patryk Laurent, Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Borja Ibarz Gabardos, Eugene Izhikevich
-
Patent number: 9463571Abstract: Robotic devices may be trained by a user guiding the robot along a target trajectory using a correction signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the trainer input, sensory input, and/or performance measure. Training may comprise a plurality of trials. During an initial portion of a trial, the trainer may observe robot's operation and refrain from providing the training input to the robot. Upon observing a discrepancy between the target behavior and the actual behavior during the initial trial portion, the trainer may provide a teaching input (e.g., a correction signal) configured to affect robot's trajectory during subsequent trials. Upon completing a sufficient number of trials, the robot may be capable of navigating the trajectory in absence of the training input.Type: GrantFiled: November 1, 2013Date of Patent: October 11, 2016Assignee: Brian CorporationInventors: Oleg Sinyavskiy, Jean-Baptiste Passot, Eugene Izhikevich
-
Publication number: 20160279790Abstract: Robots have the capacity to perform a broad range of useful tasks, such as factory automation, cleaning, delivery, assistive care, environmental monitoring and entertainment. Enabling a robot to perform a new task in a new environment typically requires a large amount of new software to be written, often by a team of experts. It would be valuable if future technology could empower people, who may have limited or no understanding of software coding, to train robots to perform custom tasks. Some implementations of the present invention provide methods and systems that respond to users' corrective commands to generate and refine a policy for determining appropriate actions based on sensor-data input. Upon completion of learning, the system can generate control commands by deriving them from the sensory data. Using the learned control policy, the robot can behave autonomously.Type: ApplicationFiled: June 6, 2016Publication date: September 29, 2016Inventors: Philip Meier, Jean-Baptiste Passot, Borja Ibarz Gabardos, Patryk Laurent, Oleg Sinyavskiy, Peter O'Connor, Eugene Izhikevich
-
Patent number: 9384443Abstract: Apparatus and methods for training of robotic devices. Robotic devices may be trained by a user guiding the robot along target trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the user guidance, sensory input, and/or performance measure. Training may comprise a plurality of trials. During first trial, the user input may be sufficient to cause the robot to complete the trajectory. During subsequent trials, the user and the robot's controller may collaborate so that user input may be reduced while the robot control may be increased. Individual contributions from the user and the robot controller during training may be may be inadequate (when used exclusively) to complete the task. Upon learning, user's knowledge may be transferred to the robot's controller to enable task execution in absence of subsequent inputs from the user.Type: GrantFiled: June 14, 2013Date of Patent: July 5, 2016Assignee: BRAIN CORPORATIONInventors: Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Patryk Laurent, Borja Ibarz Gabardos, Eugene Izhikevich
-
Patent number: 9364950Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.Type: GrantFiled: March 13, 2014Date of Patent: June 14, 2016Assignee: Brain CorporationInventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
-
Patent number: 9358685Abstract: Robots have the capacity to perform a broad range of useful tasks, such as factory automation, cleaning, delivery, assistive care, environmental monitoring and entertainment. Enabling a robot to perform a new task in a new environment typically requires a large amount of new software to be written, often by a team of experts. It would be valuable if future technology could empower people, who may have limited or no understanding of software coding, to train robots to perform custom tasks. Some implementations of the present invention provide methods and systems that respond to users' corrective commands to generate and refine a policy for determining appropriate actions based on sensor-data input. Upon completion of learning, the system can generate control commands by deriving them from the sensory data. Using the learned control policy, the robot can behave autonomously.Type: GrantFiled: February 3, 2014Date of Patent: June 7, 2016Assignee: BRAIN CORPORATIONInventors: Philip Meier, Jean-Baptiste Passot, Borja Ibarz Gabardos, Patryk Laurent, Oleg Sinyavskiy, Peter O'Connor, Eugene Izhikevich
-
Publication number: 20160151912Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.Type: ApplicationFiled: December 3, 2015Publication date: June 2, 2016Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
-
Patent number: 9314924Abstract: Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.Type: GrantFiled: June 14, 2013Date of Patent: April 19, 2016Assignee: Brain CorporationInventors: Patryk Laurent, Jean-Baptiste Passot, Oleg Sinyavskiy, Filip Ponulak, Borja Ibarz Gabardos, Eugene Izhikevich
-
Patent number: 9296101Abstract: Apparatus and methods for arbitration of control signals for robotic devices. A robotic device may comprise an adaptive controller comprising a plurality of predictors configured to provide multiple predicted control signals based on one or more of the teaching input, sensory input, and/or performance. The predicted control signals may be configured to cause two or more actions that may be in conflict with one another and/or utilize a shared resource. An arbitrator may be employed to select one of the actions. The selection process may utilize a WTA, reinforcement, and/or supervisory mechanisms in order to inhibit one or more predicted signals. The arbitrator output may comprise target state information that may be provided to the predictor block. Prior to arbitration, the predicted control signals may be combined with inputs provided by an external control entity in order to reduce learning time.Type: GrantFiled: September 27, 2013Date of Patent: March 29, 2016Assignee: Brain CorporationInventors: Patryk Laurent, Jean-Baptiste Passot, Eugene Izhikevich
-
Publication number: 20160075018Abstract: Apparatus and methods for a modular robotic device with artificial intelligence that is receptive to training controls. In one implementation, modular robotic device architecture may be used to provide all or most high cost components in an autonomy module that is separate from the robotic body. The autonomy module may comprise controller, power, actuators that may be connected to controllable elements of the robotic body. The controller may position limbs of the toy in a target position. A user may utilize haptic training approach in order to enable the robotic toy to perform target action(s). Modular configuration of the disclosure enables users to replace one toy body (e.g., the bear) with another (e.g., a giraffe) while using hardware provided by the autonomy module. Modular architecture may enable users to purchase a single AM for use with multiple robotic bodies, thereby reducing the overall cost of ownership.Type: ApplicationFiled: November 19, 2015Publication date: March 17, 2016Inventors: Eugene Izhikevich, Dimitry Fisher, Jean-Baptiste Passot, Heathcliff Hatcher, Vadim Polonichko
-
Patent number: 9248569Abstract: A robotic device may comprise an adaptive controller configured to learn to predict consequences of robotic device's actions. During training, the controller may receive a copy of the planned and/or executed motor command and sensory information obtained based on the robot's response to the command. The controller may predict sensory outcome based on the command and one or more prior sensory inputs. The predicted sensory outcome may be compared to the actual outcome. Based on a determination that the prediction matches the actual outcome, the training may stop. Upon detecting a discrepancy between the prediction and the actual outcome, the controller may provide a continuation signal configured to indicate that additional training may be utilized. In some classification implementations, the discrepancy signal may be used to indicate occurrence of novel (not yet learned) objects in the sensory input and/or indicate continuation of training to recognize said objects.Type: GrantFiled: November 22, 2013Date of Patent: February 2, 2016Assignee: Brain CorporationInventors: Patryk Laurent, Jean-Baptiste Passot, Filip Ponulak, Eugene Izhikevich
-
Patent number: 9242372Abstract: Apparatus and methods for training of robotic devices. A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. User interface of the remote controller may be reconfigured based on the detected phenotype and/or operational changes.Type: GrantFiled: May 31, 2013Date of Patent: January 26, 2016Assignee: Brain CorporationInventors: Patryk Laurent, Jean-Baptiste Passot, Mark Wildie, Eugene M. Izhikevich