Patents by Inventor Jean-Bernard Berteaux

Jean-Bernard Berteaux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981430
    Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: May 14, 2024
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Publication number: 20230271702
    Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 11673665
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 13, 2023
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Publication number: 20210354822
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Application
    Filed: May 27, 2021
    Publication date: November 18, 2021
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 11021248
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 1, 2021
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Publication number: 20200062397
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 10464670
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 5, 2019
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Publication number: 20180239353
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 23, 2018
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 9963243
    Abstract: The disclosure describes systems and methods for detecting an aerial vehicle landing. One method includes performing at least two of a plurality of landing tests to detect the landing of the aerial vehicle. The plurality of landing tests include a static test, a thrust test, and a shock test. Upon a detection of the landing by one of the at least two landing tests performed, the method further includes performing a free-fall test to detect a free fall of the aerial vehicle. The free fall of the aerial vehicle is a change in altitude of the aerial vehicle above an altitude change threshold. Upon a lack of a detection of the free fall by the free-fall test, the method includes setting a landed state for the aerial vehicle. Upon a detection of the free fall by the free-fall test, the method includes setting an in-air state for the aerial vehicle.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 8, 2018
    Assignee: GoPro, Inc.
    Inventors: Lukas Schmid, Jean-Bernard Berteaux, Fabio Diem, Sammy Omari, Thomas Gubler
  • Publication number: 20180105285
    Abstract: The disclosure describes systems and methods for detecting an aerial vehicle landing. One method includes performing at least two of a plurality of landing tests to detect the landing of the aerial vehicle. The plurality of landing tests include a static test, a thrust test, and a shock test. Upon a detection of the landing by one of the at least two landing tests performed, the method further includes performing a free-fall test to detect a free fall of the aerial vehicle. The free fall of the aerial vehicle is a change in altitude of the aerial vehicle above an altitude change threshold. Upon a lack of a detection of the free fall by the free-fall test, the method includes setting a landed state for the aerial vehicle. Upon a detection of the free fall by the free-fall test, the method includes setting an in-air state for the aerial vehicle.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 19, 2018
    Inventors: Lukas Schmid, Jean-Bernard Berteaux, Fabio Diem, Sammy Omari, Thomas Gubler