Patents by Inventor Jean-Christophe Amé

Jean-Christophe Amé has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7538194
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: May 26, 2009
    Assignee: University of Kentucky Research Foundation
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Amé, Winston Lin
  • Publication number: 20070136833
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 14, 2007
    Inventors: Myron Jacobson, Elaine Jacobson, Jean-Christophe Ame, Winston Lin
  • Publication number: 20050176050
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Application
    Filed: February 15, 2005
    Publication date: August 11, 2005
    Inventors: Myron Jacobson, Elaine Jacobson, Jean-Christophe Ame, Winston Lin
  • Patent number: 6906180
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: June 14, 2005
    Assignee: University of Kentucky Research Foundation
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Amé , Winston Lin
  • Publication number: 20020132328
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Application
    Filed: October 9, 2001
    Publication date: September 19, 2002
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Ame, Winston Lin
  • Patent number: 6395543
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: May 28, 2002
    Assignee: University of Kentucky Research Foundation
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Amé, Winston Lin
  • Patent number: 6337202
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: January 8, 2002
    Assignee: University of Kentucky Research Foundation
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Amé, Winston Lin
  • Patent number: 6333148
    Abstract: The isolation and characterization of cDNAs encoding poly(ADP-ribose) glycohydrolase (PARG) enzymes and the amino acid sequences of PARGs from several species are described. PARG is involved in the cellular response to DNA damage and its proper function is associated with the body's response to neoplastic disorder inducing agents and oxidative stress. Expression vectors containing the cDNAs and cells transformed with the vectors are described. Probes and primers that hybridize with the cDNAs are described. Expression of the cDNA in E. coli results in an enzymatically active protein of about 111 kDa and an active fragment of about 59 kDa. Methods for inhibiting PARG expression or overexpressing PARG in a subject for therapeutic benefit are described. Exemplary of PARG inhibitors are anti-sense oligonucleotides. The invention has implications for treatment of neoplastic disorder, heart attack, stroke, and neurodegenerative diseases. Methods for detecting a mutant PARG allele are also described.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: December 25, 2001
    Assignee: University of Kentucky Research
    Inventors: Myron K. Jacobson, Elaine L. Jacobson, Jean-Christophe Amé, Winston Lin