Patents by Inventor Jean Delbeke

Jean Delbeke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883196
    Abstract: An active implantable stimulating device (10) includes: (a) a tissue coupling unit (40) for being implanted directly onto a vagus nerve (Vn) of a patient, (b) an EEG-unit (70) for measuring an electroencephalogram of the patient, (c) an encapsulation unit (50) configured for being subcutaneously implanted, (d) an energy transfer lead (30) for transferring pulses of electrical and/or optical energy, (e) a signal transfer lead (60) for transferring signals between the EEG unit and the encapsulation unit. EEG electrodes (70a-70d) monitor the electric activity of the brain of a patient. The EEG signal is conveyed to the electronic circuit (53) in the form of EEG conditioned data. The electronic circuit analyses the EEG conditioned data to yield analysis results. The electronic circuit takes a decision to trigger energy pulses to stimulate the vagus nerve (VN).
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 30, 2024
    Assignee: Synergia Medical
    Inventors: Pascal Doguet, Jérôme Garnier, Jean Delbeke
  • Publication number: 20230038649
    Abstract: An active implantable stimulating device (10) includes: (a) a tissue coupling unit (40) for being implanted directly onto a vagus nerve (Vn) of a patient, (b) an EEG-unit (70) for measuring an electroencephalogram of the patient, (c) an encapsulation unit (50) configured for being subcutaneously implanted, (d) an energy transfer lead (30) for transferring pulses of electrical and/or optical energy, (e) a signal transfer lead (60) for transferring signals between the EEG unit and the encapsulation unit. EEG electrodes (70a-70d) monitor the electric activity of the brain of a patient. The EEG signal is conveyed to the electronic circuit (53) in the form of EEG conditioned data. The electronic circuit analyses the EEG conditioned data to yield analysis results. The electronic circuit takes a decision to trigger energy pulses to stimulate the vagus nerve (VN).
    Type: Application
    Filed: January 9, 2020
    Publication date: February 9, 2023
    Applicant: Synergia Medical
    Inventors: Pascal Doguet, Jérôme Garnier, Jean Delbeke
  • Patent number: 10596370
    Abstract: According to a first aspect, the invention relates to a device (10) for electrochemically releasing a composition and comprising: one working electrode (30) comprising an electroactive conjugated polymer (40) containing or doped with said composition, a counter electrode (50), and a reference electrode (60). The device (10) is characterized in that it comprises electrical means (95, 100; 320; 165, 180) connected to the working electrode (30) and to the counter electrode (50) for obtaining at said working electrode (30) at least one composition releasing sequence (65) with respect to said reference electrode (60), each composition releasing sequence (65) comprising: a first voltametric pulse (70), followed by a rest period (80) during which no current is able to flow through said working electrode (30), followed by a second voltametric pulse (90), followed by an intermediate period (160) during which no current is able to flow through said working electrode (30).
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: March 24, 2020
    Assignees: SORIN CRM SAS, UNIVERSITÉ CATHOLIQUE DE LOUVAIN
    Inventors: Jean Delbeke, Sophie Demoustier-Champagne, Vincent Callegari, Lucas Leprince, Benoit Gerard
  • Publication number: 20190255320
    Abstract: According to a first aspect, the invention relates to a device (10) for electrochemically releasing a composition and comprising: one working electrode (30) comprising an electroactive conjugated polymer (40) containing or doped with said composition, a counter electrode (50), and a reference electrode (60). The device (10) is characterized in that it comprises electrical means (95, 100; 320; 165, 180) connected to the working electrode (30) and to the counter electrode (50) for obtaining at said working electrode (30) at least one composition releasing sequence (65) with respect to said reference electrode (60), each composition releasing sequence (65) comprising: a first voltametric pulse (70), followed by a rest period (80) during which no current is able to flow through said working electrode (30), followed by a second voltametric pulse (90), followed by an intermediate period (160) during which no current is able to flow through said working electrode (30).
    Type: Application
    Filed: December 13, 2018
    Publication date: August 22, 2019
    Inventors: Jean Delbeke, Sophie Demoustier-Champagne, Vincent Callegari, Lucas Leprince, Benoit Gerard
  • Patent number: 10342980
    Abstract: The present invention relates to an electrode (30,30?) for implantation in contact with a neural tissue, said electrode extending along an axis, said neural tissue being capable of generating one or more action potentials, and said one or more action potentials propagating with a given speed in said neural tissue. The electrode comprises a carrier (31, 31?) of biocompatible electrically insulating material; stimulation electrode contacts (32a; 32?a; 32b; 32?b) deposited on a surface of said carrier (31, 31?) for applying an electrical stimulation to said neural tissue so as to generate, after a given latency time, a compound action potential when stimulated by said electrical stimulation; one or more sensing electrode contacts (33a; 33b; 33c; 33?a; 33?b; 33?c) deposited on said surface of said carrier and provided at a distance from said stimulation electrode contacts, said sensing electrode contacts being adapted to be connected to measuring means (23) having a given inactive period.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 9, 2019
    Assignee: Sorin CRM SAS
    Inventors: Michel Troosters, Jean Delbeke, Pascal Doguet, Hervé Mével
  • Publication number: 20160151630
    Abstract: The present invention relates to an electrode (30,30?) for implantation in contact with a neural tissue, said electrode extending along an axis, said neural tissue being capable of generating one or more action potentials, and said one or more action potentials propagating with a given speed in said neural tissue. The electrode comprises a carrier (31, 31?) of biocompatible electrically insulating material; stimulation electrode contacts (32a; 32?a; 32b; 32?b) deposited on a surface of said carrier (31, 31?) for applying an electrical stimulation to said neural tissue so as to generate, after a given latency time, a compound action potential when stimulated by said electrical stimulation; one or more sensing electrode contacts (33a; 33b; 33c; 33?a; 33?b; 33?c) deposited on said surface of said carrier and provided at a distance from said stimulation electrode contacts, said sensing electrode contacts being adapted to be connected to measuring means (23) having a given inactive period.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 2, 2016
    Applicant: SORIN CRM SAS
    Inventors: Michel Troosters, Jean Delbeke, Pascal Doguet, Hervé Mével
  • Patent number: 9248274
    Abstract: The present invention relates to an electrode (30,30?) for implantation in contact with a neural tissue, said electrode extending along an axis, said neural tissue being capable of generating one or more action potentials, and said one or more action potentials propagating with a given speed in said neural tissue. The electrode comprises a carrier (31, 31?) of biocompatible electrically insulating material; stimulation electrode contacts (32a; 32?a; 32b; 32?b) deposited on a surface of said carrier (31, 31?) for applying an electrical stimulation to said neural tissue so as to generate, after a given latency time, a compound action potential when stimulated by said electrical stimulation; one or more sensing electrode contacts (33a; 33b; 33c; 33?a; 33?b; 33?c) deposited on said surface of said carrier and provided at a distance from said stimulation electrode contacts, said sensing electrode contacts being adapted to be connected to measuring means (23) having a given inactive period.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 2, 2016
    Assignee: SORIN CRM SAS
    Inventors: Michel Troosters, Jean Delbeke, Pascal Doguet, Herve Mevel
  • Publication number: 20150238758
    Abstract: According to a first aspect, the invention relates to a device (10) for electrochemically releasing a composition and comprising: one working electrode (30) comprising an electroactive conjugated polymer (40) containing or doped with said composition, a counter electrode (50), and a reference electrode (60). The device (10) is characterized in that it comprises electrical means (95, 100; 320; 165, 180) connected to the working electrode (30) and to the counter electrode (50) for obtaining at said working electrode (30) at least one composition releasing sequence (65) with respect to said reference electrode (60), each composition releasing sequence (65) comprising: a first voltametric pulse (70), followed by a rest period (80) during which no current is able to flow through said working electrode (30), followed by a second voltametric pulse (90), followed by an intermediate period (160) during which no current is able to flow through said working electrode (30).
    Type: Application
    Filed: September 25, 2012
    Publication date: August 27, 2015
    Applicant: SORIN CRM SAS
    Inventors: Jean Delbeke, Sophie Demoustier-Champagne, Vincent Callegari, Lucas Leprince, Benoit Gerard
  • Publication number: 20100233226
    Abstract: The present invention relates to a nanowire array (15, 16) for electrically-controlled elution of a therapeutic composition (5) comprising a plurality of nanoscopic-sized wires (12, 12), nanowires, attached to an electrically conducting solid support (7), said nanowires formed from electroactive conjugated polymer (4) containing or doped with said therapeutic composition (5) coated over a plurality of nanoscopic sized electrically conducting protrusions (8). It also relates to a method for preparing a nanowire array and an electrode.
    Type: Application
    Filed: October 14, 2008
    Publication date: September 16, 2010
    Applicant: Université Catholique de Louvain
    Inventors: Etienne Ferain, Delphine Magnin, Sophie Demoustier-Champagne, Marie-Anne Thil, Jean Delbeke, Ides Colin
  • Publication number: 20100222844
    Abstract: The present invention relates to an electrode (30,30?) for implantation in contact with a neural tissue, said electrode extending along an axis, said neural tissue being capable of generating one or more action potentials, and said one or more action potentials propagating with a given speed in said neural tissue. The electrode comprises a carrier (31, 31?) of biocompatible electrically insulating material; stimulation electrode contacts (32a; 32?a; 32b; 32?b) deposited on a surface of said carrier (31, 31?) for applying an electrical stimulation to said neural tissue so as to generate, after a given latency time, a compound action potential when stimulated by said electrical stimulation; one or more sensing electrode contacts (33a; 33b; 33c; 33?a; 33?b; 33?c) deposited on said surface of said carrier and provided at a distance from said stimulation electrode contacts, said sensing electrode contacts being adapted to be connected to measuring means (23) having a given inactive period.
    Type: Application
    Filed: October 10, 2007
    Publication date: September 2, 2010
    Inventors: Michel Troosters, Jean Delbeke, Pascal Doguet, Herve Mevel
  • Publication number: 20040176821
    Abstract: The present invention relates to a method and a device for visualising an image by electrical stimulation of functional parts of a visual system. A method according to the present invention comprises an image provision step for providing an image to be visualised by the visual system, a selection step for selecting, from a phosphene data file comprising a description of phosphenes and the stimuli characteristics needed for obtaining them, a number of most appropriate phosphenes to be generated for visualising the image, so that the image is transferred into a summation of patches of light, and a stimulation step for stimulating functional parts of the visual system so as to generate the selected phosphenes. This way, a pixel based image is converted into a plurality of patches of light. A device for carrying out the method is also described.
    Type: Application
    Filed: April 19, 2004
    Publication date: September 9, 2004
    Inventors: Jean Delbeke, Benoit Gerard, Claud Veraart