Patents by Inventor Jean E. Hudson

Jean E. Hudson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405332
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Patent number: 11786739
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic Inc.
    Inventors: Maureen E. Lybarger, Jian Cao, Wade M. Demmer, Michael W. Heinks, Jean E. Hudson, Michael Kemmerer, James J. St. Martin, Todd J. Sheldon
  • Publication number: 20230173279
    Abstract: A medical device is configured to determine tachyarrhythmia evidence in a cardiac signal segment received from a cardiac electrical signal sensed during a pacing escape interval started to schedule a pending cardiac pacing pulse. The medical device may delay the pending cardiac pacing pulse in response to determining the tachyarrhythmia evidence during the pacing escape interval.
    Type: Application
    Filed: November 9, 2022
    Publication date: June 8, 2023
    Inventors: Xusheng ZHANG, Saul E. GREENHUT, Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Michael W. HEINKS, Jean E. HUDSON, Timothy A. EBELING, Irving J. SANCHEZ, Scott R. HAWKINSON, Troy E. JACKSON, James VANDER HEYDEN
  • Publication number: 20230107061
    Abstract: A medical device is configured to receive cardiac electrical signals and sense ventricular event signals from the cardiac electrical signals. The medical device may start a validation window in response to sensing a ventricular event signal and determine if the ventricular event signal is a valid event signal or an invalid event signal based on processing of a different cardiac electrical signal than the cardiac electrical signal from which the ventricular event signal was sensed.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 6, 2023
    Inventors: Saul E. GREENHUT, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230100431
    Abstract: A medical device is configured to sense first ventricular event signals from a first cardiac electrical signal and sense second ventricular event signals from a second cardiac electrical signal. The medical device is configured to determine sensed event data in response to the first ventricular event signals and the second ventricular event signals. The medical device may select one of the first cardiac electrical signal or the second cardiac electrical signal for providing input for tachyarrhythmia detection based on the sensed event data.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Inventors: Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20210052895
    Abstract: A medical device is configured to set a post-atrial time interval in response to an atrial event and generate an event time signal in response to a ventricular electrical signal crossing an R-wave sensing threshold during the post-atrial time interval. The device accumulates oversensing evidence in response to the event time signal and adjusts a ventricular sensing control parameter based on the accumulated oversensing evidence in some examples.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 25, 2021
    Inventors: Maureen E. LYBARGER, Jian CAO, Wade M. DEMMER, Michael W. HEINKS, Jean E. HUDSON, Michael KEMMERER, James J. ST. MARTIN, Todd J. SHELDON
  • Patent number: 10646717
    Abstract: An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: May 12, 2020
    Assignee: Medtronic, Inc.
    Inventors: Anthony W. Schrock, Jean E. Hudson, Karen J. Kleckner
  • Publication number: 20190070416
    Abstract: An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Inventors: Anthony W. Schrock, Jean E. Hudson, Karen J. Kleckner
  • Patent number: 10166396
    Abstract: An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 1, 2019
    Assignee: Medtronic, Inc.
    Inventors: Anthony W Schrock, Jean E Hudson, Karen J Kleckner
  • Publication number: 20160339248
    Abstract: An implantable device and associated method for delivering multi-site pacing therapy is disclosed. The device comprises a set of electrodes including a first ventricular electrode and a second ventricular electrode, spatially separated from one another and all coupled to an implantable pulse generator. The device comprises a processor configured for selecting a first cathode and a first anode from the set of electrodes to form a first pacing vector at a first pacing site along a heart chamber and selecting a second cathode and a second anode from the set of electrodes to form a second pacing vector at a second pacing site along the same heart chamber. The pulse generator is configured to deliver first pacing pulses to the first pacing vector and delivering second pacing pulses to the second pacing vector. The pulse generator generates a recharging current for recharging a first coupling capacitor over a first recharge time period in response to the first pacing pulses.
    Type: Application
    Filed: April 21, 2016
    Publication date: November 24, 2016
    Inventors: Anthony W. Schrock, Jean E. Hudson, Karen J. Kleckner, John D. Wahlstrand, Michael W. Heinks, Michael L. Hudziak, Subham Ghosh, Aleksandre T. Sambelashvili
  • Patent number: 6421564
    Abstract: In a bi-ventricular pacing system, an implantable pulse generator optionally having an IPG indifferent electrode is coupled to a small diameter, unipolar, left ventricular (LV) lead and a bipolar right ventricular (RV) lead. The LV lead is advanced through the superior vena cava, the right atrium, the ostium of the coronary sinus (CS), the CS, and into a coronary vein descending from the CS to locate the LV active pace/sense electrode at a desired LV pace/sense site. An LV lead placed on an epicardial surface can substitute. The RV lead in a preferred embodiment is advanced into the RV chamber to locate RV active and indifferent pace/sense electrodes therein. Sensing of RV spontaneous cardiac depolarizations to provide a RV sense event signal and delivery of RV pacing pulses is conducted across the RV active pace/sense electrode and one of the RV or IPG indifferent pace/sense electrodes.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: July 16, 2002
    Assignee: Medtronic, Inc.
    Inventors: Charles A. Yerich, Jean E. Hudson, Brian A. Blow
  • Patent number: 6324425
    Abstract: Multi-chamber cardiac pacing systems for providing multi-site pacing to at least one of the right and left atria and then synchronously to the right and left ventricles in a triggered pacing sequence while providing for recharge of the output capacitors of each output amplifier in the shortest time. The recharge operations of the present invention come into play when bi-chamber pacing is invoked to deliver right and left heart chamber pacing pulses that are separated by a triggered pacing delay that overlaps, i.e., is shorter than, the recharge time period. In a truncated recharge mode, the first pacing pulse is delivered through the first pacing path, and the recharging of the first pacing path is commenced for the duration of the triggered pacing delay. Then, the second pacing pulse is delivered, and the second pacing path is recharged for a second recharge period. The recharging of the first pacing path is conducted simultaneously with or after completion of the second recharge period.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: November 27, 2001
    Assignee: Medtronic, Inc.,
    Inventors: Brian A. Blow, Jean E. Hudson, Michael B. Terry