Patents by Inventor Jean-Frederic Chiron

Jean-Frederic Chiron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11545937
    Abstract: A dual-mode average power tracking (APT) controller operates in a first mode to move the control voltage quickly without concern for ripple or ringing. When this coarse adjustment takes the control voltage to within a desired margin of a target, the controller may switch to a second mode, where the APT controller more slowly approaches the target, but has reduced ringing or ripples. The mode is changed by changing resistance and capacitance values in a loop filter within the APT circuit. In a further aspect, a pulse shaper circuit may inject a pulse to force the control voltage to change more rapidly. By switching modes in this fashion, the control voltage may quickly reach a desired target, and then remain in the second mode during a transmission time slot such that the control voltage is clean throughout.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: January 3, 2023
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Robert Moehrke
  • Publication number: 20220311387
    Abstract: A dual-mode average power tracking (APT) controller operates in a first mode to move the control voltage quickly without concern for ripple or ringing. When this coarse adjustment takes the control voltage to within a desired margin of a target, the controller may switch to a second mode, where the APT controller more slowly approaches the target, but has reduced ringing or ripples. The mode is changed by changing resistance and capacitance values in a loop filter within the APT circuit. In a further aspect, a pulse shaper circuit may inject a pulse to force the control voltage to change more rapidly. By switching modes in this fashion, the control voltage may quickly reach a desired target, and then remain in the second mode during a transmission time slot such that the control voltage is clean throughout.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Robert Moehrke
  • Patent number: 11025224
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR) and a first compensating ARFR, is disclosed. A first inductive element is coupled between the first compensating ARFR and a first end of the first ARFR. A second inductive element is coupled between the first compensating ARFR and a second end of the first ARFR. The first compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 1, 2021
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Patent number: 10873301
    Abstract: A dual-input voltage memory digital pre-distortion (mDPD) circuit and related ET apparatus are provided. In examples discussed herein, an ET apparatus includes an amplifier circuit(s) configured to amplify a radio frequency (RF) signal based on an ET voltage. A tracker circuit is configured to generate the ET voltage based on a number of target voltage amplitudes derived from a number of signal amplitudes of the RF signal. However, the tracker circuit can cause the ET voltage to deviate from the target voltage amplitudes due to various inherent impedance variations, particularly at a higher modulation bandwidth. In this regard, a dual-input voltage mDPD circuit is configured to digitally pre-distort the target voltage amplitudes based on the signal amplitudes such that the ET voltage can closely track the target voltage amplitudes. As such, it is possible to mitigate ET voltage deviation, thus helping to improve overall linearity performance of the ET apparatus.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: December 22, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Jean-Frederic Chiron
  • Patent number: 10868499
    Abstract: An envelope tracking (ET) voltage tracker circuit is provided. The ET voltage tracker circuit is configured to generate a time-variant voltage based on a time-variant target voltage, which further corresponds to a time-variant power envelope of a radio frequency (RF) signal. The time-variant voltage may be provided to an amplifier circuit(s) for amplifying the RF signal. The ET voltage tracker circuit includes a target voltage processing circuit configured to pre-process the time-variant target voltage. More specifically, the target voltage processing circuit is configured to pre-process the time-variant target voltage based on a high-order transfer function when the time-variant target voltage corresponds to a higher modulation bandwidth (e.g., >80 MHz). As a result, it may be possible to improve temporal alignment between the time-variant voltage and the time-variant target voltage at the amplifier circuit(s), thus allowing the amplifier circuit(s) to operate with improved efficiency and linearity.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 15, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Philippe Gorisse, Nadim Khlat, Jean-Frederic Chiron
  • Publication number: 20200321920
    Abstract: A dual-input voltage memory digital pre-distortion (mDPD) circuit and related ET apparatus are provided. In examples discussed herein, an ET apparatus includes an amplifier circuit(s) configured to amplify a radio frequency (RF) signal based on an ET voltage. A tracker circuit is configured to generate the ET voltage based on a number of target voltage amplitudes derived from a number of signal amplitudes of the RF signal. However, the tracker circuit can cause the ET voltage to deviate from the target voltage amplitudes due to various inherent impedance variations, particularly at a higher modulation bandwidth. In this regard, a dual-input voltage mDPD circuit is configured to digitally pre-distort the target voltage amplitudes based on the signal amplitudes such that the ET voltage can closely track the target voltage amplitudes. As such, it is possible to mitigate ET voltage deviation, thus helping to improve overall linearity performance of the ET apparatus.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Inventor: Jean-Frederic Chiron
  • Patent number: 10742474
    Abstract: An envelope tracking (ET) amplifier circuit is provided. The voltage mDPD circuit is provided in an ET amplifier circuit and configured to determine a voltage deviation relative to an ET modulated target voltage signal, execute an mDPD polynomial in one or more iterations to extract an mDPD coefficient(s), and adjust a time-variant target voltage envelope of the ET modulated target voltage signal based on the mDPD coefficient(s) extracted in each of the mDPD iterations to reduce the voltage deviation to a predefined threshold. By reducing the voltage deviation in the ET modulated voltage, it is possible improve linearity (e.g., gain linearity) of the ET amplifier circuit, which can lead to reduced power consumption and improved radio frequency (RF) performance.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: August 11, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Andrew F. Folkmann
  • Publication number: 20200036338
    Abstract: An envelope tracking (ET) voltage tracker circuit is provided. The ET voltage tracker circuit is configured to generate a time-variant voltage based on a time-variant target voltage, which further corresponds to a time-variant power envelope of a radio frequency (RF) signal. The time-variant voltage may be provided to an amplifier circuit(s) for amplifying the RF signal. The ET voltage tracker circuit includes a target voltage processing circuit configured to pre-process the time-variant target voltage. More specifically, the target voltage processing circuit is configured to pre-process the time-variant target voltage based on a high-order transfer function when the time-variant target voltage corresponds to a higher modulation bandwidth (e.g., >80 MHz). As a result, it may be possible to improve temporal alignment between the time-variant voltage and the time-variant target voltage at the amplifier circuit(s), thus allowing the amplifier circuit(s) to operate with improved efficiency and linearity.
    Type: Application
    Filed: November 26, 2018
    Publication date: January 30, 2020
    Inventors: Philippe Gorisse, Nadim Khlat, Jean-Frederic Chiron
  • Patent number: 10516428
    Abstract: A radio frequency front-end (RFFE) slave circuit and related apparatus are provided. The RFFE slave circuit may be coupled to a number of RFFE masters over an RFFE bus. The RFFE slave circuit may be configured by the RFFE masters for accessing, either concurrently or alternately, a number of sharable circuits in an envelope tracking (ET) circuit. The RFFE slave circuit may include common configuration circuitry configured to set a common configuration parameter(s) for a concurrently sharable circuit(s) in the ET circuit. The RFFE slave circuit may include private configuration circuitry configured to set a private configuration parameter(s) for an alternately sharable circuit(s) in the ET circuit. By employing the RFFE slave circuit to set the common and/or private configuration parameter(s) for the ET circuit, it may be possible to reduce processing delays in the RFFE bus, thus helping to improve efficiency of the ET circuit and/or the power amplifier(s).
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 24, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Christopher Truong Ngo, Jean-Frederic Chiron, Nadim Khlat, William David Southcombe
  • Patent number: 10491162
    Abstract: An envelope tracking (ET) amplifier circuit is provided. In examples discussed herein, an amplifier circuit(s) is configured to amplify a radio frequency (RF) signal based on an ET modulated voltage. A tracker circuit is configured to generate the ET modulated voltage based on a number of target voltage amplitudes derived from a time-variant signal envelope of the RF signal. However, the tracker circuit can cause the ET modulated voltage to deviate from the target voltage amplitudes due to various impedance variations. In this regard, a voltage memory digital pre-distortion (mDPD) circuit digitally pre-distorts the target voltage amplitudes based on the time-variant signal envelope such that the ET modulated voltage can closely track the target voltage amplitudes. As such, it is possible to mitigate ET modulated voltage deviation, thus helping to improve overall linearity performance of the ET amplifier circuit.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 26, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Jean-Frederic Chiron, Nadim Khlat, Andrew F. Folkmann, Michael R. Kay
  • Publication number: 20190229975
    Abstract: An envelope tracking (ET) amplifier circuit is provided. The voltage mDPD circuit is provided in an ET amplifier circuit and configured to determine a voltage deviation relative to an ET modulated target voltage signal, execute an mDPD polynomial in one or more iterations to extract an mDPD coefficient(s), and adjust a time-variant target voltage envelope of the ET modulated target voltage signal based on the mDPD coefficient(s) extracted in each of the mDPD iterations to reduce the voltage deviation to a predefined threshold. By reducing the voltage deviation in the ET modulated voltage, it is possible improve linearity (e.g., gain linearity) of the ET amplifier circuit, which can lead to reduced power consumption and improved radio frequency (RF) performance.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Andrew F. Folkmann
  • Publication number: 20190214966
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR) and a first compensating ARFR, is disclosed. A first inductive element is coupled between the first compensating ARFR and a first end of the first ARFR. A second inductive element is coupled between the first compensating ARFR and a second end of the first ARFR. The first compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Application
    Filed: February 22, 2019
    Publication date: July 11, 2019
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Patent number: 10333494
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR) and a first compensating ARFR, is disclosed. A first inductive element is coupled between the first compensating ARFR and a first end of the first ARFR. A second inductive element is coupled between the first compensating ARFR and a second end of the first ARFR. The first compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: June 25, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Publication number: 20190181803
    Abstract: An envelope tracking (ET) amplifier circuit is provided. In examples discussed herein, an amplifier circuit(s) is configured to amplify a radio frequency (RF) signal based on an ET modulated voltage. A tracker circuit is configured to generate the ET modulated voltage based on a number of target voltage amplitudes derived from a time-variant signal envelope of the RF signal. However, the tracker circuit can cause the ET modulated voltage to deviate from the target voltage amplitudes due to various impedance variations. In this regard, a voltage memory digital pre-distortion (mDPD) circuit digitally pre-distorts the target voltage amplitudes based on the time-variant signal envelope such that the ET modulated voltage can closely track the target voltage amplitudes. As such, it is possible to mitigate ET modulated voltage deviation, thus helping to improve overall linearity performance of the ET amplifier circuit.
    Type: Application
    Filed: March 29, 2018
    Publication date: June 13, 2019
    Inventors: Jean-Frederic Chiron, Nadim Khlat, Andrew F. Folkmann, Michael R. Kay
  • Patent number: 10291205
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR) and a first compensating ARFR, is disclosed. A first inductive element is coupled between the first compensating ARFR and a first end of the first ARFR. A second inductive element is coupled between the first compensating ARFR and a second end of the first ARFR. The first compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: May 14, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Patent number: 10284174
    Abstract: Disclosed in one embodiment is filter circuitry having first and second paths extending between first and second nodes. The first path has a first inductor and a second inductor coupled in series between the first node and the second node, wherein the first inductor and the second inductor are positively coupled with one another, and a first common node is provided between the first inductor and the second inductor. First shunt acoustic resonators are coupled between the first common node and a fixed voltage node. The second path includes a third inductor and a fourth inductor coupled in series between the first node and the second node. The third inductor and the fourth inductor are negatively coupled with one another, and a second common node is provided between the third inductor and the fourth inductor. Second acoustic resonators are coupled between the second common node and a fixed voltage node.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: May 7, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron
  • Patent number: 10284412
    Abstract: An envelope tracking (ET) amplifier circuit is provided. The voltage mDPD circuit is provided in an ET amplifier circuit and configured to determine a voltage deviation relative to an ET modulated target voltage signal, execute an mDPD polynomial in one or more iterations to extract an mDPD coefficient(s), and adjust a time-variant target voltage envelope of the ET modulated target voltage signal based on the mDPD coefficient(s) extracted in each of the mDPD iterations to reduce the voltage deviation to a predefined threshold. By reducing the voltage deviation in the ET modulated voltage, it is possible improve linearity (e.g., gain linearity) of the ET amplifier circuit, which can lead to reduced power consumption and improved radio frequency (RF) performance.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 7, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Andrew F. Folkmann
  • Patent number: 10256790
    Abstract: RF circuitry, which includes a first acoustic RF resonator (ARFR) and a first compensating ARFR, is disclosed. A first inductive element is coupled between the first compensating ARFR and a first end of the first ARFR. A second inductive element is coupled between the first compensating ARFR and a second end of the first ARFR. The first compensating ARFR, the first inductive element, and the second inductive element at least partially compensate for a parallel capacitance of the first ARFR.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: April 9, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Marcus Granger-Jones, Andrew F. Folkmann, Robert Aigner
  • Publication number: 20190020526
    Abstract: An envelope tracking (ET) amplifier circuit is provided. The voltage mDPD circuit is provided in an ET amplifier circuit and configured to determine a voltage deviation relative to an ET modulated target voltage signal, execute an mDPD polynomial in one or more iterations to extract an mDPD coefficient(s), and adjust a time-variant target voltage envelope of the ET modulated target voltage signal based on the mDPD coefficient(s) extracted in each of the mDPD iterations to reduce the voltage deviation to a predefined threshold. By reducing the voltage deviation in the ET modulated voltage, it is possible improve linearity (e.g., gain linearity) of the ET amplifier circuit, which can lead to reduced power consumption and improved radio frequency (RF) performance.
    Type: Application
    Filed: October 25, 2017
    Publication date: January 17, 2019
    Inventors: Nadim Khlat, Jean-Frederic Chiron, Andrew F. Folkmann
  • Patent number: 9948350
    Abstract: Circuitry includes a first RF power amplifier, a second RF power amplifier, a third RF power amplifier, a first bias signal generator, and a second bias signal generator. The first RF power amplifier and the second RF power amplifier are each configured to amplify RF signals for transmission in a first carrier network. The third RF power amplifier is configured to amplify RF signals for transmission in a second carrier network. In a first mode, the first bias signal generator provides a bias signal to the first RF power amplifier and the second bias signal generator provides a bias signal to the second RF power amplifier. In a second mode, the first bias signal generator and the second bias signal generator each provide a portion of a bias signal to the third RF power amplifier.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 17, 2018
    Assignee: Qorvo US, Inc.
    Inventors: Jean-Frederic Chiron, Nadim Khlat