Patents by Inventor Jean-Jacques Duruz

Jean-Jacques Duruz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030075454
    Abstract: A method of inhibiting dissolution of a transition metal alloy anode (40) of an aluminium electrowinning cell comprises providing a sodium-inert layer (11,20,50,50′) on a sodium-active cathodic cell material (15), such as carbon, and electrolysing alumina dissolved in a sodium ion-containing molten electrolyte (30). Aluminium ions rather than sodium ions are cathodically reduced on the sodium-inert layer to inhibit the presence in the molten electrolyte (30) of soluble cathodically-produced sodium metal that constitutes an agent for chemically reducing the anode's transition metal oxides and anodically evolved oxygen, thereby inhibiting reduction of the anode's transition metal oxides by sodium metal and maintaining the evolved oxygen at the anode at a concentration such as to produce at the alloy/oxide layer interface stable and coherent transition metal oxides having a high level of oxidation.
    Type: Application
    Filed: March 30, 2002
    Publication date: April 24, 2003
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Publication number: 20030070937
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14; 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active transition metal oxide layer, in particular an iron oxide-based outside layer (16) such as a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina. The cell operating temperature is sufficiently low so that the required concentration of iron species in the electrolyte (5) is limited by the reduced solubility of iron species in the electrolyte at the operating temperature, which consequently limits the contamination of the product aluminium by iron to an acceptable level.
    Type: Application
    Filed: November 25, 2002
    Publication date: April 17, 2003
    Inventors: Jean-Jacques Duruz, Vittorio De Nora, Olivier Crottaz
  • Publication number: 20030066755
    Abstract: An anode of a cell for the electrowinning of aluminium comprises a nickel-iron alloy substrate having an openly porous nickel metal rich outer portion whose surface is electrochemically active. The outer portion is optionally covered with an external integral nickel-iron oxide containing surface layer which adheres to the nickel metal rich outer portion of the nickel-iron alloy and which in use is pervious to molten electrolyte. During use, the nickel metal rich outer portion contains cavities some or all of which are partly or completely filled with iron and nickel compounds, in particular oxides, fluorides and oxyfluorides.
    Type: Application
    Filed: June 3, 2002
    Publication date: April 10, 2003
    Inventors: Jean-Jacques Duruz, Thinh T. Nguyen, Vittorio De Nora
  • Patent number: 6533909
    Abstract: A bipolar cell for the electrowinning of aluminium has bipolar electrodes each comprising a carbon cathode body having on one side an active surface on which aluminium is produced and connected on the other side through an oxygen impermeable barrier layer to an electrochemically active anode layer having an oxygen evolving iron oxide-based outer surface. The anode layer may comprise a metal-based anode substrate and a transition metal oxide-based outside layer, in particular an iron oxide-based outside layer, which either is an applied layer or is obtainable by oxidising the surface of the anode substrate which contains iron. During operation, the anode layer can be kept dimensionally stable by maintaining in the electrolyte a concentration of transition metal species which are present as one or more corresponding transition metal oxides in the electrochemically-active layer.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: March 18, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora
  • Patent number: 6521115
    Abstract: An anode of a cell for the electrowinning of aluminium comprises an iron-nickel alloy body or layer whose surface is oxidised to form a coherent and adherent outer iron oxide-based layer, in particular hematite, the surface of which is electrochemically active for the oxidation of oxygen ions and which reduces diffusion of oxygen from the electrochemically active surface into the iron-nickel alloy body or layer. The anode may be kept dimensionally stable during cell operation by maintaining a sufficient amount of dissolved alumina and iron species in the electrolyte to prevent dissolution of the outer oxide layer of the or each anode and by reducing the electrolyte operating temperature to limit dissolution of iron and by reducing the electrolyte operating temperature to limit dissolution of iron species in the electrolyte.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: February 18, 2003
    Assignee: Moltech Invent S. A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Patent number: 6521116
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14; 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active transition metal oxide layer, in particular an iron oxide-based outside layer (16) such as a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species and dissolved alumina. The cell operating temperature is sufficiently low so species and dissolved alumina.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: February 18, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora, Olivier Crottaz
  • Publication number: 20030010628
    Abstract: A cell for the electrowinning of aluminum using anodes (10) made from a alloy of iron with nickel and/or cobalt is arranged to produce aluminum of low contamination and of commercial high grade quality. The cell comprises a cathode (20) of drained configuration and operates at reduced temperature without formation of a crust or ledge of solidified electrolyte. The cell is thermally insulated using an insulating cover (65,65a,65b,65c) and an insulating sidewall lining (71). The molten electrolyte (30) is substantially saturated with alumina, particularly on the electrochemically active anode surface, and with species of at least one major metal present at the surface of the nickel-iron alloy based anodes (10). The cell is preferably operated at reduced temperature from 730° to 910° C. to limit the solubility of these metal species and consequently the contamination of the product aluminum.
    Type: Application
    Filed: April 27, 2002
    Publication date: January 16, 2003
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Publication number: 20020148328
    Abstract: An apparatus for treating, in particular purifying or degassing, molten metal (40), comprising a component (10) exposable to molten metal to be treated and means (13) for imparting a rotary motion to the molten metal (40) about a substantially vertical axis. The apparatus is so arranged that during use at least part of a wear-exposed surface of the component (10) is temporarily or permanently in contact with molten metal (40), the contacting molten metal being in motion relative to the wear-exposed surface. The wear-exposed surface is coated with a slurry-applied protective coating (18A,18B) of refractory material in a heat stable binder, in particular an inorganic colloidal and/or polymeric binder, protecting the wear-exposed surface against erosion, oxidation and corrosion.
    Type: Application
    Filed: October 16, 2001
    Publication date: October 17, 2002
    Inventors: K. Jaqueline Holz, Jean-Jacques Duruz
  • Patent number: 6436273
    Abstract: An electrolytic cell for the electrowinning of aluminium comprises a cathode cell bottom provided with a series of sloped active cathode surfaces (11, 12) down which produced aluminium (60) is drained, and a series of recessed grooves or channels (20), below the bottom of the cathode active surfaces (11, 12) and extending therealong which collect and evacuate the drained produced aluminum (63). Preferably the active surfaces (11, 12) are V-shaped and the recessed grooves or channels (20) are provided with a sloping bottom and a constant cross-sectional area. Alumina is so fed into the cell as to supply alumina-rich electrolyte (62) into the recessed grooves or channels (20) which contain the alumina-rich electrolyte along substantially their entire length above the drained layer of aluminium (63).
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: August 20, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jean-Jacques Duruz
  • Patent number: 6436250
    Abstract: A refractory boride body or coating made of a boride of titanium, chromium, vanadium, ziconium, hafnium, niobium, tantalum, molybednum and cerium is produced from a slurry of the refractory boride or a precursor in a collidal carrier preferably composed of two more different grades of the same colloidal carrier selected from colloidal alumina, yttria, ceria, thoria, zirconia, magnesia, lithia, monoaluminum phosphate and cerium acetate. The slurry can also comprise an organic additive selected from polyvinyl alcohol; polyacrylic acid; hydroxyy propyl methyl cellulose; polythylene glycol; ethylene glycol, butyl benzyl phthalate; ammonium polymethacrylate and mixtures thereof. The retractory boride body or coated body is useful as a component of aluminum electrowinning cells.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: August 20, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh Akkaraju Sekhar, Jean-Jacques Duruz, James Jeng Liu
  • Patent number: 6436274
    Abstract: A non-carbon, metal-based slow-consumable anode of a cell for the electrowinning of aluminium self-forms during normal electrolysis an electrochemically-active oxide-based surface layer (20). The rate of formation (35) of the layer (20) is substantially equal to its rate of dissolution (30) at the surface layer/electrolyte interface (25) thereby maintaining its thickness substantially constant, forming a limited barrier controlling the oxidation rate (35). The anode (10) usually comprises an alloy of iron with at least one of nickel, copper, cobalt or zinc which during use forms an oxide surface layer (20) mainly containing ferrite.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: August 20, 2002
    Inventors: Vittorio De Nora, Jean-Jacques Duruz
  • Publication number: 20020079231
    Abstract: A method of protecting during the start-up procedure a cathode (1) of a cell for the electrowinning of aluminium where the cathode (1) is optionally coated with an aluminium-wettable refractory material (2) and on which cathode, in use, aluminium is produced. The start-up procedure comprises applying before preheating the cell one or more start-up layers (3) on the aluminium-wettable refractory coating (2). The start-up layer(s) form(s) a temporary protection (3) against damage of chemical and/or mechanical origin to the aluminium-wettable coating (2), this temporary protection (3) being in intimate contact with the aluminium-wettable coating (2) and being eliminated before or during the initial normal operation of the cell. The layers of the temporary protection (3) may be obtained from at least one pliable foil of aluminium having a thickness of less than 0.
    Type: Application
    Filed: October 17, 2001
    Publication date: June 27, 2002
    Inventors: Vittorio de Nora, Jainagesh Akkaraju Sekhar, Jean-Jacques Duruz, James Jenq Liu
  • Publication number: 20020074223
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes (10), each having a metal-based anode substrate, for instance comprising a metal core (11) covered with an metal layer 12, an oxygen barrier layer (13), one or more intermediate layers (14, 14A, 14B) and an iron layer (15). The anode substrate is covered with an electrochemically active iron oxide-based outside layer (16), in particular a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species. The cell operating temperature is sufficiently low so that the required concentration of iron species in the electrolyte (5) is limited by the reduced solubility of iron species in the electrolyte at the operating temperature, which consequently limits the contamination of the product aluminium by iron to an acceptable level.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 20, 2002
    Inventors: Jean-Jacques Duruz, Vittorio de Nora
  • Patent number: 6402927
    Abstract: The invention relates to a method of producing aluminum in an electrolytic cell, particularly in a drained cell, such cell comprising a cathode (20) and facing anodes (10), each anode (10) being spaced apart in its operative position from the cathode (20) by an anode-cathode reduced distance defining an anode-cathode gap containing the bath being electrolyzed. The method comprises: feeding alumina into the electrolyte where it is dissolved; electrolyzing an alumina-rich bath in the anode-cathode gap; and periodically moving at least one anode (10) in order to intake rich-alumina electrolyte into the anode-cathode gap thereby distributing alumina-rich electrolyte under the entire anode surface.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: June 11, 2002
    Assignee: Moltech Invent S.A. Luxembourg
    Inventors: Jean-Jacques Duruz, Vittorio Bello
  • Patent number: 6379526
    Abstract: A non-carbon metal-based anode of a cell for the electrowinning of aluminium comprising an electrically conductive metal substrate resistant to high temperature, the surface of which becomes passive and substantially inert to the electrolyte, and a coating adherent to the metal substrate making the surface of the anode electrochemically active for the oxidation of oxygen ions present at the electrolyte interface. The substrate metal may be selected from nickel, cobalt, chromium, molybdenum, tantalum and the Lanthanide series. The active constituents of the coating are for example oxides such as spinels or perovskites, oxyfluorides, phosphides or carbides, in particular ferrites. The active constituents may be coated onto the substrate from a slurry or suspension containing colloidal material and the electrochemically active material.
    Type: Grant
    Filed: July 15, 2000
    Date of Patent: April 30, 2002
    Assignee: Moltech Invent SA
    Inventors: Vittorio de Nora, Jean-Jacques Duruz
  • Patent number: 6372099
    Abstract: A cell for the electrowinning of aluminium comprising one or more anodes, each having a metal-based anode substrate, comprising a metal core covered with an metal layer, an oxygen barrier layer, one or more intermediate layers and an iron layer. The anode substrate is covered with an electrochemically active iron oxide-based outside layer, particularly a hematite-based layer, which remains dimensionally stable during operation in a cell by maintaining in the electrolyte a sufficient concentration of iron species. The cell operating temperature is sufficiently low so the required concentration of iron species in the electrolyte is limited by the reduced solubility of iron species in the electrolyte at the operating temperature, limiting the contamination of the product aluminium by iron to an acceptable level. The iron oxide-based layer is an applied coating or an oxidised surface of a substrate, the surface of which contains iron.
    Type: Grant
    Filed: July 30, 1998
    Date of Patent: April 16, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Jean-Jacques Duruz, Vittorio de Nora
  • Patent number: 6361681
    Abstract: A method of coating an electronically conductive and heat resistant substrate of an anode of a cell for the electrowinning of metals, in particular a cell for the electrowinning of aluminium, to protect and make the surface of the anode active for the oxidation of the oxygen ions present in the electrolyte. The method comprises applying onto the substrate a slurry comprising at least one oxide or oxide precursor as a non-dispersed but suspended particulate in a colloidal and/or inorganic polymeric carrier. The applied-slurry is then solidified and made adherent to the substrate upon heat treatment to form an adherent, protective, predominantly oxide-containing coating. The colloidal and/or inorganic polymeric carrier may comprise at least one of alumina, ceria, lithia, magnesia, silica, thoria, yttria, zirconia, tin oxide and zinc oxide. The oxide of the coating may be a chromite or a ferrite, such as a ferrite selected from cobalt, copper, manganese, nickel and zinc.
    Type: Grant
    Filed: July 15, 2000
    Date of Patent: March 26, 2002
    Assignee: Moltech Invent S.A. Luxembourg
    Inventors: Vittorio de Nora, Jean-Jacques Duruz
  • Patent number: 6338785
    Abstract: A method of protecting a cathode during the start-up procedure of an aluminum electrowinning cell where the cathode is optionally coated with an aluminium-wettable refractory material and when in use, aluminium is produced thereon. The start-up procedure comprises applying, before preheating the cell, one or more start-up layers in intimate contact on the aluminium-wettable refractory coating which form(s) a temporary protection against damage of chemical and/or mechanical origin to the aluminium-wettable coating; this temporary protection being eliminated before or during the initial normal cell operation. The temporary protection layers may be obtained from at least one pliable aluminium foil having a thickness of less than 0.1 mm and/or an applied aluminium-containing metallization, optionally in combination with inter alia a boron-containing solution, a polymer, a phosphates of aluminium-containing solution, or a colloid that gels while preheating the cell, or combinations thereof.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: January 15, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh Akkaraju Sekhar, Jean-Jacques Duruz, James Jeng Liu
  • Publication number: 20010027923
    Abstract: A non-carbon, metal-based slow-consumable anode of a cell for the electrowinning of aluminium self-forms during normal electrolysis an electrochemically-active oxide-based surface layer (20). The rate of formation (35) of the layer (20) is substantially equal to its rate of dissolution (30) at the surface layer/electrolyte interface (25) thereby maintaining its thickness substantially constant, forming a limited barrier controlling the oxidation rate (35). The anode (10) usually comprises an alloy of iron with at least one of nickel, copper, cobalt or zinc which during use forms an oxide surface layer (20) mainly containing ferrite.
    Type: Application
    Filed: June 15, 2001
    Publication date: October 11, 2001
    Inventors: Vittorio de Nora, Jean-Jacques Duruz
  • Publication number: 20010022274
    Abstract: A method of manufacturing an anode for use in a cell for the electrowinning of aluminium comprises oxidising before cell operation an iron-nickel alloy substrate in an oxygen-containing atmosphere, such as air, at a temperature which is at least 50° C., preferably 100° C., above the operating temperature of the cell to form on the surface of the iron-nickel substrate a coherent and adherent iron oxide-containing outer layer, in particular a hematite-containing layer having a limited ionic conductivity for oxygen ions and acting as a partial barrier to monoatomic oxygen. The outer layer is electrochemically active for the oxidation of oxygen ions and reduces also diffusion of oxygen to the iron-nickel alloy substrate when the anode is in use.
    Type: Application
    Filed: January 29, 2001
    Publication date: September 20, 2001
    Inventors: Olivier Crottaz, Jean-Jacques Duruz