Patents by Inventor Jean-Luc Pageard

Jean-Luc Pageard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200093539
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed herein, including an inflatable member for positioning an ablation device within a pulmonary vein ostium. An apparatus can include first and second shafts moveable relative to one another, first and second electrodes configured to generate an electric field for ablating tissue, and an inflatable member disposed between the first and second electrodes. In some embodiments, the inflatable member is configured to transition from an undeployed configuration to a deployed configuration in response to movement of the first and second shafts. In some embodiments, the inflatable member in the deployed configuration can engage a wall of a pulmonary vein ostium and direct the electric field generated by the first and second electrodes toward the wall.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 26, 2020
    Applicant: Farapulse, Inc.
    Inventors: Gary L. LONG, Raju VISWANATHAN, Jean-Luc PAGEARD, Benoit THIBAULT
  • Publication number: 20200046423
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 13, 2020
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD, Brittney HACHEY
  • Patent number: 10433908
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: October 8, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard, Brittney Hachey
  • Patent number: 10390872
    Abstract: An intravascular catheter is provided, including a flexible elongate body; an expandable element positioned on the elongate body; a substantially linear thermal segment located proximally of the expandable element, the thermal segment defining a first flexibility, where the thermal segment is positioned between two portions of the catheter body each including a flexibility less than that of the thermal segment; a first fluid flow path in fluid communication with the expandable element; and a second fluid flow path in fluid communication with the thermal segment.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: August 27, 2019
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Luc Pageard
  • Publication number: 20190231421
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the device including a set of splines coupled to a catheter for medical ablation therapy. Each spline of the set of splines may include a set of electrodes formed on that spline. The set of splines may be configured for translation to transition between a first configuration and a second configuration. The devices described herein may be used to form a lesion via focal ablation.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Inventors: Raju VISWANATHAN, Allan ZINGELER, Gary LONG, Jean-Luc PAGEARD, Brittney HACHEY
  • Publication number: 20190151015
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD
  • Publication number: 20190069950
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the device including a set of splines coupled to a catheter for medical ablation therapy. Each spline of the set of splines may include a set of electrodes formed on that spline. The set of splines may be configured for translation to transition between a first configuration and a second configuration.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Applicant: Farapulse, Inc.
    Inventors: Raju VISWANATHAN, Allan ZINGELER, Gary LONG, Jean-Luc PAGEARD
  • Publication number: 20190008587
    Abstract: Methods are provided for monitoring and controlling tissue ablation using RF energy delivered by an imaging ablation catheter under direct visualization, using the control and modulation of a set of ablation parameters based on direct optical imaging of the tissue surface via the imaging ablation catheter, where a set of optical image-derived parameters modulates the setting of a subset of Radio Frequency dosing parameters. The ablation dosing algorithms based on image-derived information can be implemented manually or in semi-automated or automated forms.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 10, 2019
    Inventors: John B. Allison, Celina Escobedo, Jean-Luc Pageard, Brian Pedersen
  • Patent number: 10172673
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: January 8, 2019
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Gary Long, Jean-Luc Pageard
  • Patent number: 10130423
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the device including a set of splines coupled to a catheter for medical ablation therapy. Each spline of the set of splines may include a set of electrodes formed on that spline. The set of splines may be configured for translation to transition between a first configuration and a second configuration.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 20, 2018
    Assignee: Farapulse, Inc.
    Inventors: Raju Viswanathan, Allan Zingeler, Gary Long, Jean-Luc Pageard
  • Publication number: 20180311497
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed in the context of esophageal ablation. An ablation device may include a first catheter defining a longitudinal axis and a lumen therethrough. A balloon may be coupled to the first catheter. The balloon may be configured to transition between a deflated configuration and an inflated configuration. A second catheter may extend from a distal end of the first catheter lumen. A set of splines including electrodes formed on a surface of each of the splines may couple to the distal end of the first catheter lumen and a distal portion of the second catheter. The second catheter may be configured for translation along the longitudinal axis to transition the set of splines between a first configuration and a second configuration.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 1, 2018
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD
  • Patent number: 10098692
    Abstract: Methods are provided for monitoring and controlling tissue ablation using RF energy delivered by an imaging ablation catheter under direct visualization, using the control and modulation of a set of ablation parameters based on direct optical imaging of the tissue surface via the imaging ablation catheter, where a set of optical image-derived parameters modulates the setting of a subset of Radio Frequency dosing parameters. The ablation dosing algorithms based on image-derived information can be implemented manually or in semi-automated or automated forms.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: October 16, 2018
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: John B. Allison, Jean-Luc Pageard, Brian Pedersen, Celina Escobedo
  • Patent number: 10022175
    Abstract: The present invention provides a medical device having an elongate body with both a proximal end and a distal end, wherein the elongate body defines an intake lumen and an exhaust lumen. The medical device also has a first pliable element defining a cooling chamber disposed at a point along the elongate body, with the cooling chamber being in fluid communication with the intake lumen and the exhaust lumen. A second pliable element is provided which at least partially encloses the first pliable element, thereby defining a junction between the first and second pliable element. A check valve is included which is in fluid communication with the junction between the first pliable element and second pliable element, the valve further being in fluid communication with the exhaust lumen. Additionally, the medical device may include sensors or other monitoring means in fluid communication with the junction and the cooling chamber.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 17, 2018
    Assignee: Medtronic CryoCath LP
    Inventors: Marwan Abboud, Rachid Mahrouche, Teresa Ann Mihalik, Chadi Harmouche, Jean-Luc Pageard, John W. Lehmann
  • Publication number: 20180085160
    Abstract: Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes at least one electrode for ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 29, 2018
    Inventors: Raju VISWANATHAN, Gary LONG, Jean-Luc PAGEARD
  • Patent number: 9795433
    Abstract: The present invention provides a medical device having an elongate body with both a proximal end and a distal end, wherein the elongate body defines an intake lumen and an exhaust lumen. The medical device also has a first pliable element defining a cooling chamber disposed at a point along the elongate body, with the cooling chamber being in fluid communication with the intake lumen and the exhaust lumen. A second pliable element is provided which at least partially encloses the first pliable element, thereby defining a junction between the first and second pliable element. A check valve is included which is in fluid communication with the junction between the first pliable element and second pliable element, the valve further being in fluid communication with the exhaust lumen. Additionally, the medical device may include sensors or other monitoring means in fluid communication with the junction and the cooling chamber.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: October 24, 2017
    Assignee: Medtronic CryoCath LP
    Inventors: Marwan Abboud, Rachid Mahrouche, Teresa Ann Mihalik, Chadi Harmouche, Jean-Luc Pageard, John W. Lehmann
  • Patent number: 9743973
    Abstract: The present invention advantageously provides a method and system for cryogenically ablating large areas of tissue within the left atrium. In an exemplary embodiment a cryotherapy device includes a catheter body, a proximal end and a distal end; a first lumen; a second lumen; and an ablation element expandable from a first diameter to a second diameter, the ablation element having a surface portion that conforms to the uneven surface topography of the cardiac tissue. The ablation element can include one or more deformable balloon and/or flexible elements. The surface of the balloon can further be shaped by regulation of pressure within the one or more balloons. In an exemplary method, a tissue ablation device is provided and tissue in the left atrium is ablated with the device, whereby the ablation is created by freezing tissue.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: August 29, 2017
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Luc Pageard
  • Publication number: 20160367306
    Abstract: The present invention provides a medical device having an elongate body with both a proximal end and a distal end, wherein the elongate body defines an intake lumen and an exhaust lumen. The medical device also has a first pliable element defining a cooling chamber disposed at a point along the elongate body, with the cooling chamber being in fluid communication with the intake lumen and the exhaust lumen. A second pliable element is provided which at least partially encloses the first pliable element, thereby defining a junction between the first and second pliable element. A check valve is included which is in fluid communication with the junction between the first pliable element and second pliable element, the valve further being in fluid communication with the exhaust lumen. Additionally, the medical device may include sensors or other monitoring means in fluid communication with the junction and the cooling chamber.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Marwan ABBOUD, Rachid MAHROUCHE, Teresa Ann MIHALIK, Chadi HARMOUCHE, Jean-Luc PAGEARD, John W. LEHMANN
  • Publication number: 20160354134
    Abstract: An intravascular catheter is provided, including a flexible elongate body; an expandable element positioned on the elongate body; a substantially linear thermal segment located proximally of the expandable element, the thermal segment defining a first flexibility, where the thermal segment is positioned between two portions of the catheter body each including a flexibility less than that of the thermal segment; a first fluid flow path in fluid communication with the expandable element; and a second fluid flow path in fluid communication with the thermal segment.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventor: Jean-Luc PAGEARD
  • Patent number: 9445859
    Abstract: An intravascular catheter is provided, including a flexible elongate body; an expandable element positioned on the elongate body; a substantially linear thermal segment located proximally of the expandable element, the thermal segment defining a first flexibility, where the thermal segment is positioned between two portions of the catheter body each including a flexibility less than that of the thermal segment; a first fluid flow path in fluid communication with the expandable element; and a second fluid flow path in fluid communication with the thermal segment.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 20, 2016
    Assignee: Medtronic CryoCath LP
    Inventor: Jean-Luc Pageard
  • Publication number: 20160166306
    Abstract: An intravascular catheter is provided, including a flexible elongate body; an expandable element positioned on the elongate body; a substantially linear thermal segment located proximally of the expandable element, the thermal segment defining a first flexibility, where the thermal segment is positioned between two portions of the catheter body each including a flexibility less than that of the thermal segment; a first fluid flow path in fluid communication with the expandable element; and a second fluid flow path in fluid communication with the thermal segment.
    Type: Application
    Filed: January 20, 2016
    Publication date: June 16, 2016
    Inventor: Jean-Luc PAGEARD