Patents by Inventor Jean M. Beique

Jean M. Beique has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6938458
    Abstract: An apparatus and system are disclosed for in situ measurement of downhole fluid flow using Doppler techniques. First, a baseline speed of sound is established as close to the desired measurement point as possible. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based from induced Doppler shift resulting from fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for low flow velocities can be enhanced. From in situ measurements, well kicks may be spotted and dealt with in real-time. In addition, current theoretical models of rheological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the velocity measurements described herein can be used to recognize downhole lost circulation and/or gas/water/oil influxes as early as possible, even when the mud recirculation pumps are turned off.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: September 6, 2005
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wei Han, Jean M. Beique, James R. Birchak, Alan T. Hemphill, Tim Wiemers, Paul F. Rodney
  • Patent number: 6829947
    Abstract: apparatus and system are disclosed for in situ measurement of downhole fluid flow using Doppler techniques. First, a baseline speed of sound is established as close to the desired measurement point as possible. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based from induced Doppler shift resulting from fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for low flow velocities can be enhanced. From in situ measurements, well kicks may be spotted and dealt with in real-time. In addition, current theoretical models of rheological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the velocity measurements described herein can be used to recognize downhole lost circulation and/or gas/water/oil influxes as early as possible, even when the mud recirculation pumps are turned off.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: December 14, 2004
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Wei Han, Jean M. Beique, James R. Birchak, Alan T. Hemphill, Tim Wiemers, Paul F. Rodney
  • Publication number: 20040003658
    Abstract: An apparatus and system are disclosed for in situ measurement of downhole fluid flow using Doppler techniques. First, a baseline speed of sound is established as close to the desired measurement point as possible. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based from induced Doppler shift resulting from fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for low flow velocities can be enhanced. From in situ measurements, well kicks may be spotted and dealt with in real-time. In addition, current theoretical models of Theological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the velocity measurements described herein can be used to recognize downhole lost circulation and/or gas/water/oil influxes as early as possible, even when the mud recirculation pumps are turned off.
    Type: Application
    Filed: May 14, 2003
    Publication date: January 8, 2004
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Wei Han, Jean M. Beique, James R. Birchak, Alan T. Hemphill, Tim Wiemers, Paul F. Rodney