Patents by Inventor Jean M Carver

Jean M Carver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975206
    Abstract: An implantable medical device (IMD) comprises a plurality of deep tines configured to be advanced into a septum of a heart of a patient in different directions that are not parallel to a longitudinal axis of the implantable medical device, wherein each deep tine of the plurality of deep tines is configured to deliver cardiac pacing to cardiac tissue distal to a chamber of the heart in which the IMD is implanted, and one or more shallow electrodes engageable with the septum, wherein the one or more shallow electrodes are configured to deliver cardiac pacing to the chamber of the heart in which the IMD is implanted.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Kaileigh E. Rock, Michael D. Eggen, Jean M. Carver, Duane N. Mateychuk, Zhongping C. Yang, Douglas S. Hine, Scott J. Brabec, Vania Lee
  • Patent number: 11951313
    Abstract: Devices, systems, and methods deliver implantable medical devices for ventricular-from-atrial (VfA) cardiac therapy. A VfA device may be implanted in the right atrium (RA) with an electrode extending from the right atrium into the left ventricular myocardium. A flexible leed, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. Some methods may include locating a potential implantation site in the triangle of Koch region in the right atrium of a patient's heart; attaching a fixation sheath to the right-atrial endocardium in the potential implantation site; and implanting the medical device over a guide wire at the potential implantation site. An implantable medical device may include an intracardiac housing and a leadlet, which may be delivered by these methods.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: April 9, 2024
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Andrea J. Asleson, Jean M. Carver, Kathryn Hilpisch
  • Publication number: 20220314001
    Abstract: A medical system includes an implantable medical device that carries a first electrode on a distal end of the implantable medical device and a return electrode. The implantable medical device is configured to be positioned within a heart. The implantable medical device further includes a leadlet including a proximal end and a distal end. The proximal end is attached to the implantable medical device, and the distal end is configured to penetrate tissue of the heart. The leadlet carries a second electrode, and a body of the leadlet between the proximal end and the distal end is configured to flex when the distal end is implanted in the tissue of the heart. The implantable medical device further includes a fixation device attached to the implantable medical device. The fixation device is configured to affix the distal end of the implantable medical device to the heart.
    Type: Application
    Filed: March 8, 2022
    Publication date: October 6, 2022
    Inventors: Matthew D. Bonner, Kathryn Hilpisch, Kaileigh E. Rock, Jean M. Carver
  • Patent number: 11197996
    Abstract: A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: December 14, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kenneth C. Gardeski, Ronald A. Drake, Xin Chen, Michael R. Leners, Lonnie D. Ronning, Lester O. Stener, Matthew D. Bonner, Jean M. Carver, Brian P. Colin, Alexander R. Mattson, Kathryn Hilpisch, Vladimir Grubac
  • Publication number: 20210275824
    Abstract: An implantable medical device (IMD) comprises a plurality of deep tines configured to be advanced into a septum of a heart of a patient in different directions that are not parallel to a longitudinal axis of the implantable medical device, wherein each deep tine of the plurality of deep tines is configured to deliver cardiac pacing to cardiac tissue distal to a chamber of the heart in which the IMD is implanted, and one or more shallow electrodes engageable with the septum, wherein the one or more shallow electrodes are configured to deliver cardiac pacing to the chamber of the heart in which the IMD is implanted.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 9, 2021
    Inventors: Kaileigh E. Rock, Michael D. Eggen, Jean M. Carver, Duane N. Mateychuk, Zhongping C. Yang, Douglas S. Hine, Scott J. Brabec, Vania Lee
  • Patent number: 11065441
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode protruding from a surface of the structure, between opposing sides thereof, and tissue-penetrating fixation tines, each extending from a corresponding shoulder of the structure surface, adjacent to the opposing sides. In a relaxed condition, each tine extends away from the surface and then bends toward a proximal end of the structure and back toward the surface. In an extended condition, each tine bends toward a distal end of the structure and extends along the corresponding shoulder. A holding member of a delivery tool has opposing sidewalls defining a cavity, wherein each sidewall includes a rail-like edge that fits in sliding engagement with a corresponding shoulder, to deform a corresponding tine into the extended condition, when an operator passes the assembly into the cavity. Applying a push force, to move the assembly back out form the cavity, releases the tines.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 20, 2021
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Raymond W. Usher, Teresa A. Whitman, Jean M. Carver, Kathryn Hilpisch
  • Publication number: 20200155845
    Abstract: Devices, systems, and methods deliver implantable medical devices for ventricular-from-atrial (VfA) cardiac therapy. A VfA device may be implanted in the right atrium (RA) with an electrode extending from the right atrium into the left ventricular myocardium. A flexible leed, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. Some methods may include locating a potential implantation site in the triangle of Koch region in the right atrium of a patient's heart; attaching a fixation sheath to the right-atrial endocardium in the potential implantation site; and implanting the medical device over a guide wire at the potential implantation site. An implantable medical device may include an intracardiac housing and a leadlet, which may be delivered by these methods.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 21, 2020
    Inventors: Matthew D. Bonner, Andrea J. Asleson, Jean M. Carver, Kathryn Hilpisch
  • Publication number: 20190298989
    Abstract: A medical delivery device for delivering a medical device includes a navigable elongated member, a deployment bay, and a compression mechanism. The deployment bay may be configured to house the medical device as the medical device is navigated to the target site. The deployment bay may be at a distal end of the delivery device and may include a distal opening through which the medical device may be deployed. The compression mechanism is configured to longitudinally compress in response to a predetermined force such that the elongated member and deployment bay are relatively closer together along a longitudinal axis of the delivery device.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Inventors: Kenneth C. GARDESKI, Ronald A. DRAKE, Xin CHEN, Michael R. LENERS, Lonnie D. RONNING, Lester O. STENER, Matthew D. BONNER, Jean M. CARVER, Brian P. COLIN, Alexander R. MATTSON, Kathryn HILPISCH, Vladimir GRUBAC
  • Publication number: 20190217081
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode protruding from a surface of the structure, between opposing sides thereof, and tissue-penetrating fixation tines, each extending from a corresponding shoulder of the structure surface, adjacent to the opposing sides. In a relaxed condition, each tine extends away from the surface and then bends toward a proximal end of the structure and back toward the surface. In an extended condition, each tine bends toward a distal end of the structure and extends along the corresponding shoulder. A holding member of a delivery tool has opposing sidewalls defining a cavity, wherein each sidewall includes a rail-like edge that fits in sliding engagement with a corresponding shoulder, to deform a corresponding tine into the extended condition, when an operator passes the assembly into the cavity. Applying a push force, to move the assembly back out form the cavity, releases the tines.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Inventors: Matthew D. Bonner, Raymond W. Usher, Teresa A. Whitman, Jean M. Carver, Kathryn Hilpisch
  • Patent number: 10328257
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode, and fixation tines. The electrode protrudes from a surface of the structure, offset proximally from a distal end of the structure, and approximately centered between first and second sides of the structure. Each tine extends away from the surface—a first adjacent the first side, and a second adjacent the second side. Each tine is elastically deformable from a relaxed condition, in which the tine extends toward a proximal end of the structure, to an extended condition, in which the tine extends away from the distal end of the structure. A delivery tool has first and second longitudinally extending sidewalls to receive passage of the structure therebetween. When the structure distal end is located between proximal ends of the sidewalls, a rail-like edge of each sidewall receives, and elastically deforms to the extended condition, a corresponding tine.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 25, 2019
    Assignee: Medtronic, Inc.
    Inventors: Teresa A Whitman, Matthew D Bonner, Jean M Carver, Raymond W Usher
  • Patent number: 10238865
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode protruding from a surface of the structure, between opposing sides thereof, and tissue-penetrating fixation tines, each extending from a corresponding shoulder of the structure surface, adjacent to the opposing sides. In a relaxed condition, each tine extends away from the surface and then bends toward a proximal end of the structure and back toward the surface. In an extended condition, each tine bends toward a distal end of the structure and extends along the corresponding shoulder. A holding member of a delivery tool has opposing sidewalls defining a cavity, wherein each sidewall includes a rail-like edge that fits in sliding engagement with a corresponding shoulder, to deform a corresponding tine into the extended condition, when an operator passes the assembly into the cavity. Applying a push force, to move the assembly back out form the cavity, releases the tines.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: March 26, 2019
    Assignee: Medtronic, Inc.
    Inventors: Matthew D Bonner, Raymond W Usher, Teresa A Whitman, Jean M Carver, Kathryn Hilpisch
  • Publication number: 20180117307
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode, and fixation tines. The electrode protrudes from a surface of the structure, offset proximally from a distal end of the structure, and approximately centered between first and second sides of the structure. Each tine extends away from the surface—a first adjacent the first side, and a second adjacent the second side. Each tine is elastically deformable from a relaxed condition, in which the tine extends toward a proximal end of the structure, to an extended condition, in which the tine extends away from the distal end of the structure. A delivery tool has first and second longitudinally extending sidewalls to receive passage of the structure therebetween. When the structure distal end is located between proximal ends of the sidewalls, a rail-like edge of each sidewall receives, and elastically deforms to the extended condition, a corresponding tine.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 3, 2018
    Inventors: Teresa A. Whitman, Matthew D. Bonner, Jean M. Carver, Raymond W. Usher
  • Publication number: 20180099138
    Abstract: An implantable medical device assembly includes a mounting structure, an electrode protruding from a surface of the structure, between opposing sides thereof, and tissue-penetrating fixation tines, each extending from a corresponding shoulder of the structure surface, adjacent to the opposing sides. In a relaxed condition, each tine extends away from the surface and then bends toward a proximal end of the structure and back toward the surface. In an extended condition, each tine bends toward a distal end of the structure and extends along the corresponding shoulder. A holding member of a delivery tool has opposing sidewalls defining a cavity, wherein each sidewall includes a rail-like edge that fits in sliding engagement with a corresponding shoulder, to deform a corresponding tine into the extended condition, when an operator passes the assembly into the cavity. Applying a push force, to move the assembly back out form the cavity, releases the tines.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: Matthew D. Bonner, Raymond W. Usher, Teresa A. Whitman, Jean M. Carver, Kathryn Hilpisch
  • Patent number: 9526891
    Abstract: An implantable pacemaker system includes a housing having a proximal end and a distal end. A control electronics subassembly defines the housing proximal end, and a battery subassembly defines the housing distal end. A distal fixation member extends from the housing distal end for fixing the housing distal end at an implant site. A pacing extension extends from the housing proximal end and carries a pacing cathode electrode. The pacing extension extends the pacing cathode electrode to a pacing site that is spaced apart from the implant site when the pacemaker is deployed in a patient's body.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 27, 2016
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, Vladimir Grubac, Jean M Carver, Ryan Goff, Thomas A Anderson
  • Publication number: 20160310723
    Abstract: An implantable pacemaker system includes a housing having a proximal end and a distal end. A control electronics subassembly defines the housing proximal end, and a battery subassembly defines the housing distal end. A distal fixation member extends from the housing distal end for fixing the housing distal end at an implant site. A pacing extension extends from the housing proximal end and carries a pacing cathode electrode. The pacing extension extends the pacing cathode electrode to a pacing site that is spaced apart from the implant site when the pacemaker is deployed in a patient's body.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 27, 2016
    Inventors: Michael D Eggen, Vladimir Grubac, Jean M Carver, Ryan Goff, Thomas A Anderson