Patents by Inventor Jean-Marc Hueber

Jean-Marc Hueber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6553049
    Abstract: A reliable modular production quality ArF excimer laser capable of producing laser pulses at repetition rates in the range of 3,000 to 4,000 Hz or greater with pulse energies in the range of about 2 mJ to 5 mJ or greater with a full width half, maximum bandwidth of about 0.4 pm or less and dose stability of less than 0.4 percent. Using this laser as an illumination source, stepper or scanner equipment can produce integrated circuit resolution of 0.10 &mgr;m (100 nm) or less. Replaceable modules include a laser chamber; a modular pulse power system; and a line narrowing module. For a given laser power output, the higher repetition rate provides two important advantages. The lower per pulse energy means less optical damage and the larger number of pulses for a specified illumination dose means better dose stability.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 22, 2003
    Assignee: Cymer, Inc.
    Inventors: Herve A. Besaucele, Jean-Marc Hueber, Alexander I. Ershov, Thomas Hofmann, Vladimir B. Fleurov
  • Patent number: 6466602
    Abstract: A gas discharge laser having a laser chamber with two elongated erodable electrode elements, each having an erodable section and an electrode with support configured to minimize discharge region laser gas turbulence and with the electrode elements being configured to permit gradual erosion over more than 8 billion pulses without causing substantial changes in the shape of electrical discharges between the electrode elements. A pulse power system provides electrical pulses of at least 2J at rates of at least 2 KHz. A blower circulates laser gas between the electrodes at speeds of at least 2 m/s and a heat exchanger is provided to remove heat produced by the blower and the discharges.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 15, 2002
    Assignee: Cymer, Inc.
    Inventors: Vladimir B. Fleurov, Michael C. Cates, Michael Du'Lyea, Igor V. Fomenkov, Dmitri V. Gaidarenko, Jean-Marc Hueber, Richard G. Morton, Eckehard D. Onkels, Robert A. Shannon, Ross H. Winnick
  • Patent number: 6442181
    Abstract: A gas discharge laser capable of operating at pulse rates in the range of 4,000 Hz to 6,000 Hz at pulse energies in the range of 5 mJ to 10 mJ or greater.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: August 27, 2002
    Assignee: Cymer, Inc.
    Inventors: I. Roger Oliver, William N. Partlo, Richard M. Ness, Richard L. Sandstrom, Stuart L. Anderson, Alex P. Ivaschenko, James K. Howey, Vladimir Kulgeyko, Jean-Marc Hueber, Daniel L. Birx
  • Patent number: 6414979
    Abstract: A gas discharge laser having a laser chamber with two elongated erodable electrode elements, at least one of said electrode element having a generally blunt blade-shaped portion comprised of a material having high electrical conductivity with a flow shaping dielectric fairing positioned on each of two sides of said blunt blade-shaped portion. A pulse power system provides electrical pulses at rates of at least 1 KHz. A blower circulates laser gas between the electrodes at speeds of at least 10 m/s and a heat exchanger is provided to remove heat produced by the blower and the discharges.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: July 2, 2002
    Assignee: Cymer, Inc.
    Inventors: Richard C. Ujazdowski, Michael C. Cates, Richard G. Morton, Jean-Marc Hueber, Ross H. Winnick
  • Patent number: 6363094
    Abstract: A long life laser chamber for a halogen containing gas discharge laser. In a preferred embodiment electrode erosion caused by excited fluorine (i.e., atomic fluorine and fluorine ions) is reduced by forcing the excited fluorine away from the discharge footprint of the electrodes. Preferred embodiments include electrodes with a large number of small holes in the discharge footprint through which laser gas flows to remove the excited fluorine from the footprint region in the time period between electric discharges.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: March 26, 2002
    Assignee: Cymer, Inc.
    Inventors: Richard G. Morton, Jean-Marc Hueber
  • Publication number: 20010050939
    Abstract: A gas discharge laser having a laser chamber with two elongated erodable electrode elements, at least one of said electrode element having a generally blunt blade-shaped portion comprised of a material having high electrical conductivity with a flow shaping dielectric fairing positioned on each of two sides of said blunt blade-shaped portion. A pulse power system provides electrical pulses at rates of at least 1 KHz. A blower circulates laser gas between the electrodes at speeds of at least 10 m/s and a heat exchanger is provided to remove heat produced by the blower and the discharges.
    Type: Application
    Filed: January 23, 2001
    Publication date: December 13, 2001
    Inventors: Richard C. Ujazdowski, Michael C. Cates, Richard G. Morton, Jean-Marc Hueber, Ross H. Winnick
  • Patent number: 6317447
    Abstract: Methods and structural changes in gas discharge lasers for minimizing wavelength chirp at high pulse rates. Applicants have identified the major cause of wavelength chirp in high pulse rate gas discharge lithography lasers as pressure waves from a discharge reflecting back to the discharge region coincident with a subsequent discharge. The timing of the arrival of the pressure wave is determined by the temperature of the laser gas through which the wave is traveling. During burst mode operation, the laser gas temperature in prior art lasers changes by several degrees over periods of a few milliseconds. These changing temperatures change the location of the coincident pressure waves from pulse to pulse within the discharge region causing a variation in the pressure of the laser gas which in turn affects the index of refraction of the discharge region causing the laser beam exiting the rear of the laser to slightly change direction.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: November 13, 2001
    Assignee: Cymer, Inc.
    Inventors: William N. Partlo, Igor V. Fomenkov, Jean-Marc Hueber, Zsolt Bor, Eckehard D. Onkels, Michael C. Cates, Richard C. Ujazdowski, Vladimir B. Fleurov, Dmitri V. Gaidarenko
  • Patent number: 6018537
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz or greater. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved commutation module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: January 25, 2000
    Assignee: Cymer, Inc.
    Inventors: Thomas Hofmann, Jean-Marc Hueber, Palash P. Das, Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom
  • Patent number: RE38054
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz or greater. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved communication module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 1, 2003
    Assignee: Cymer, Inc.
    Inventors: Thomas Hofmann, Jean-Marc Hueber, Palash P. Das, Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom