Patents by Inventor Jean-Marc Sol

Jean-Marc Sol has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110085257
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made by (a) forming a reflective coating on a thin substantially flat glass substrate (the thin glass substrate may or may not be pre-bent prior to the coating being applied thereto), (b) optionally, if the glass substrate in (a) was not prebent, then cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate or frame member to the thin bent glass substrate with the coating thereon from (a) and/or (b), the plate or frame member (which may be another thicker pre-bent glass sheet, for example) for maintaining the thin glass substrate and coating thereon in a desired bent orientation in a final product which may be used as parabolic trough or dish type reflector in a concentrating solar power apparatus or the like.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 14, 2011
    Inventors: Kevin O'Connor, Yei-Ping (Mimi) H. Wang, Duane O. Recker, Robert A. Vandal, Shane M. Hadfield, Jean-Marc Sol, Greg Brecht
  • Patent number: 7871664
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made by (a) forming a reflective coating on a thin substantially flat glass substrate (the thin glass substrate may or may not be pre-bent prior to the coating being applied thereto), (b) optionally, if the glass substrate in (a) was not prebent, then cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate or frame member to the thin bent glass substrate with the coating thereon from (a) and/or (b), the plate or frame member (which may be another thicker pre-bent glass sheet, for example) for maintaining the thin glass substrate and coating thereon in a desired bent orientation in a final product which may be used as parabolic trough or dish type reflector in a concentrating solar power apparatus or the like.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: January 18, 2011
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Kevin O'Connor, Yei-Ping (Mimi) H. Wang, Duane O. Recker, Robert A. Vandal, Shane Hadfield, Jean-Marc Sol, Greg Brecht
  • Publication number: 20100021642
    Abstract: There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be removed via blasting it off using particles mainly of material softer than the DLC. In certain example embodiments, the blasting particles may be of or include sodium bicarbonate and/or may be directed at the protective film at a blasting pressure of from about 2.5 to 7.
    Type: Application
    Filed: July 28, 2008
    Publication date: January 28, 2010
    Inventor: Jean-Marc Sol
  • Publication number: 20080302462
    Abstract: In certain example embodiments of this invention, there is provided a method of making a window, the method including: forming a multi-layered low-E and/or solar control coating on a glass substrate; providing at least two flexible protective sheets in non-liquid form to the glass substrate over at least part of the low-E and/or solar control coating; applying at least one protective coating in liquid form, before and/or after the flexible protective sheets are provided, so as to reduce one or more gaps formed between the low-E and/or solar control coating and the flexible protective sheet(s) and/or between the flexible protective sheets; and performing one or more of cutting, edge seaming, and/or washing the coated article with the protective coating and protective sheets thereon and peeling the protective sheets and at least part of the protective coating off of the top surface of the low-E and/or solar control coating. Heat treatment (e.g.
    Type: Application
    Filed: June 6, 2007
    Publication date: December 11, 2008
    Applicants: Gaurdian Industries Corp.
    Inventors: Jean-Marc Sol, Herbert Lage, John A. Vanderploeg, Desaraju V. Varaprasad, Lutz Henkel, Marcel Schloremberg
  • Publication number: 20070223121
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made performing at least the following steps: (a) forming a reflective coating on a flat glass substrate, (b) cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate member (e.g., thermoplastic or glass based) to the cold-bent glass substrate, the plate member for maintaining the coated glass substrate in a desired bent orientation. In certain example embodiments, the glass substrate supporting the reflective coating may be maintained in desired bent form by using another glass substrate and a glue layer provided between the another glass substrate and the glass substrate supporting the coating. The bent reflector (e.g., mirror) may be used in a solar collector, or in any other suitable application.
    Type: Application
    Filed: March 23, 2006
    Publication date: September 27, 2007
    Applicant: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Pierre-Yves Franck, Jean-Marc Sol
  • Publication number: 20070221313
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made performing at least the following steps: (a) forming a reflective coating on a flat glass substrate, (b) cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate or frame member (e.g., another glass sheet/substrate, or alternatively a thermoplastic member) to the cold-bent glass substrate, the plate or frame member for maintaining the coated glass substrate in a desired bent orientation. In certain example embodiments, the glass substrate supporting the reflective coating may be maintained in desired bent form by using another glass substrate and a glue layer provided between the another glass substrate and the glass substrate supporting the coating. The bent reflector (e.g., mirror) may be used in a solar collector, or in any other suitable application.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 27, 2007
    Applicant: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Pierre-Yves Franck, Jean-Marc Sol
  • Publication number: 20070223096
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made by (a) forming a reflective coating on a thin substantially flat glass substrate (the thin glass substrate may or may not be pre-bent prior to the coating being applied thereto), (b) optionally, if the glass substrate in (a) was not prebent, then cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate or frame member to the thin bent glass substrate with the coating thereon from (a) and/or (b), the plate or frame member (which may be another thicker pre-bent glass sheet, for example) for maintaining the thin glass substrate and coating thereon in a desired bent orientation in a final product which may be used as parabolic trough or dish type reflector in a concentrating solar power apparatus or the like.
    Type: Application
    Filed: December 15, 2006
    Publication date: September 27, 2007
    Inventors: Kevin O'Connor, Yei-Ping (Mimi) H. Wang, Duane Recker, Robert A. Vandal, Shane Hadfield, Jean-Marc Sol, Greg Brecht
  • Patent number: 6906287
    Abstract: Opposing substrates of a vehicle window are laminated to one another using a polymer inclusive interlayer which has a notch or cut-out portion defined therein. Following lamination, at least one bus bar(s) supported by one of the substrates is exposed in this notch or cut-out portion of the interlayer. Then, an external connector may be electrically connected to the bus bar(s) at a location between the opposed substrates, by sliding a portion of the connector into a gap between the two laminated substrates at a location where the bus bar(s) is exposed due to the notch or cut-out in the interlayer. Because the connector can be electrically connected to the bus bar(s) after the lamination process, various techniques (e.g., nipper rolls, vacuum apparatus, etc.) may be used to laminate the substrates to one another prior to this electrical connection.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: June 14, 2005
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventor: Jean-Marc Sol
  • Patent number: 6870134
    Abstract: A heatable window (e.g., vehicle windshield) includes a heatable layer including one or more conductive layers. The heatable layer may be a single layer conductive coating, or alternatively may be a multi-layer heatable coating including one or more dielectric layer(s) in addition to one or more heatable conductive layer(s). Bus bars are provided so that a voltage may be applied across at least one conductive layer of the coating, in order to heat the layer so that the coating generates heat for defogging, deicing and/or desnowing the window. At least a portion of one of the bus bars includes both an underlying conductive base layer portion, and an overlying conductive braid portion that is conductively attached to the conductive base portion. The braid portion significantly increases the current capacity of the bus bar portion if so desired.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: March 22, 2005
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jean-Marc Sol, Christian Bizzari
  • Patent number: 6734396
    Abstract: A heatable vehicle window includes a bottom bus bar and a plurality of top bus bars. Voltages or electric potentials applied to the top bus bars are different, so that a first one of the top bus bars is at a given electric potential and another one of the top bus bars is at another electric potential (i.e., the voltages/potentials are offset from one another). The degree to which the top bus bar voltages/potentials are offset relative to one another is a function of the distance each respective bus bar is from the bottom bus bar across the heatable layer(s). Given a substantially continuous heatable layer(s), this can in certain example embodiments enable approximately uniform heating of the window (e.g., laminated vehicle windshield, laminated vehicle backlite, or laminated vehicle sidelite).
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: May 11, 2004
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jean-Marc Sol, Herve Lagrue
  • Patent number: 6625875
    Abstract: A heatable vehicle window (e.g., windshield, sidelite or backlite) includes a multi-layer coating formed on a substrate. The multi-layer coating includes at least one dielectric layer and at least one conductive layer. A pair of bus bars are deposited on the substrate over the coating, so that at least the dielectric layer is provided between the bus bars and the conductive layer(s). In order to create an electrical connection between the bus bars and the conductive layer(s) of the coating, the bus bars and/or coating is/are heated to a temperature sufficient to permit the bus bars to reach molten or semi-molten form. Portions of bus bar material then flow down through at least the dielectric layer of the coating (i.e., forming a contact hole in the coating) so as to contact the coating's conductive layer(s). After cooling of the newly formed bus bars, the window may be selectively heated by passing current through the conductive layer(s) via the bus bars.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: September 30, 2003
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventor: Jean-Marc Sol
  • Publication number: 20030146199
    Abstract: A heatable window (e.g., vehicle windshield) includes a heatable layer including one or more conductive layers. The heatable layer may be a single layer conductive coating, or alternatively may be a multi-layer heatable coating including one or more dielectric layer(s) in addition to one or more heatable conductive layer(s). Bus bars are provided so that a voltage may be applied across at least one conductive layer of the coating, in order to heat the layer so that the coating generates heat for defogging, deicing and/or desnowing the window. At least a portion of one of the bus bars includes both an underlying conductive base layer portion, and an overlying conductive braid portion that is conductively attached to the conductive base portion. The braid portion significantly increases the current capacity of the bus bar portion if so desired.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Inventors: Jean-Marc Sol, Christian Bizzari
  • Publication number: 20030116551
    Abstract: A heatable vehicle window includes a bottom bus bar and a plurality of top bus bars. Voltages or electric potentials applied to the top bus bars are different, so that a first one of the top bus bars is at a given electric potential and another one of the top bus bars is at another electric potential (i.e., the voltages/potentials are offset from one another). The degree to which the top bus bar voltages/potentials are offset relative to one another is a function of the distance each respective bus bar is from the bottom bus bar across the heatable layer(s). Given a substantially continuous heatable layer(s), this can in certain example embodiments enable approximately uniform heating of the window (e.g., laminated vehicle windshield, laminated vehicle backlite, or laminated vehicle sidelite).
    Type: Application
    Filed: September 7, 2001
    Publication date: June 26, 2003
    Inventors: Jean-Marc Sol, Herve Lagrue
  • Patent number: 6559419
    Abstract: A heatable vehicle window including at least three different heating zones. A conductive coating is divided into at least three different heatable coating portions which are spaced apart from one another. A top bus bar includes a step or protruding portion which extends toward the bottom bus bar at an area of an intermediate one of the heatable coating portions. This protruding portion enables, for example and without limitation, a rain sensor or toll device to efficiently transmit and/or receive signals (e.g. IR signals, RF signals, or the like) through the window at an area behind the protrusion where the coating has been deleted. Because of the division of the coating into at least three different heatable coating portions, approximately uniform current distribution is enabled along the top bus bar (even at the protruding portion thereof) so as to reduce the likelihood of overheating.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: May 6, 2003
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jean-Marc Sol, Issam Sabra, Bernd Feider, Charles Courlander
  • Publication number: 20030042239
    Abstract: Opposing substrates of a vehicle window are laminated to one another using a polymer inclusive interlayer which has a notch or cut-out portion defined therein. Following lamination, at least one bus bar(s) supported by one of the substrates is exposed in this notch or cut-out portion of the interlayer. Then, an external connector may be electrically connected to the bus bar(s) at a location between the opposed substrates, by sliding a portion of the connector into a gap between the two laminated substrates at a location where the bus bar(s) is exposed due to the notch or cut-out in the interlayer. Because the connector can be electrically connected to the bus bar(s) after the lamination process, various techniques (e.g., nipper rolls, vacuum apparatus, etc.) may be used to laminate the substrates to one another prior to this electrical connection.
    Type: Application
    Filed: September 6, 2001
    Publication date: March 6, 2003
    Inventor: Jean-Marc Sol
  • Publication number: 20030019859
    Abstract: A heatable vehicle window (e.g., windshield, sidelite or backlite) includes a multi-layer coating formed on a substrate. The multi-layer coating includes at least one dielectric layer and at least one conductive layer. A pair of bus bars are deposited on the substrate over the coating, so that at least the dielectric layer is provided between the bus bars and the conductive layer(s). In order to create an electrical connection between the bus bars and the conductive layer(s) of the coating, the bus bars and/or coating is/are heated to a temperature sufficient to permit the bus bars to reach molten or semi-molten form. Portions of bus bar material then flow down through at least the dielectric layer of the coating (i.e., forming a contact hole in the coating) so as to contact the coating's conductive layer(s). After cooling of the newly formed bus bars, the window may be selectively heated by passing current through the conductive layer(s) via the bus bars.
    Type: Application
    Filed: March 26, 2001
    Publication date: January 30, 2003
    Inventor: Jean-Marc Sol
  • Publication number: 20030019860
    Abstract: A bus bar arrangement for a heatable vehicle window. An electroconductive coating is divided into two separate coating portions which represent two different respective heating zones. A single bottom bus bar is common to both heating zones, while a first upper/top bus bar portion is provided for the first heating zone and a different second upper/top bus bar portion is provided for the second heating zone. The two upper/top bus bars are spaced apart and electrically insulated from one another. Conductive bus bar extension portions lead from the respective upper bus bars down to a bottom edge of the window (e.g., vehicle windshield) so that electrical connectors for all three bus bars can be located along or proximate a single edge of the window.
    Type: Application
    Filed: April 11, 2001
    Publication date: January 30, 2003
    Inventor: Jean-Marc Sol
  • Publication number: 20020192428
    Abstract: A method of making a vehicle window (e.g., windshield or backlite), wherein the method includes using sandblasting to delete a portion(s) of a coating (one or more layers) in an area which may require high visible light transmission in the resulting window. After a portion of the coating on a first sheet has been removed or deleted via sandblasting, the first sheet is laminated to another sheet via at least a polymer inclusive interlayer. The interlayer may include PVB in certain embodiments. The step of laminating significantly increases the visible transmission of the resulting vehicle window in the area where sandblasting was used to delete the portion of the coating.
    Type: Application
    Filed: June 19, 2001
    Publication date: December 19, 2002
    Inventors: Jean-Marc Sol, Alexandre Schalburg
  • Patent number: 6492619
    Abstract: A bus bar arrangement for a heatable vehicle window. An electroconductive coating is divided into two separate coating portions which represent two different respective heating zones. A single bottom bus bar is common to both heating zones, while a first upper/top bus bar portion is provided for the first heating zone and a different second upper/top bus bar portion is provided for the second heating zone. The two upper/top bus bars are spaced apart and electrically insulated from one another. Conductive bus bar extension portions lead from the respective upper bus bars down to a bottom edge of the window (e.g., vehicle windshield) so that electrical connectors for all three bus bars can be located along or proximate a single edge of the window.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: December 10, 2002
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (CRVC)
    Inventor: Jean-Marc Sol
  • Patent number: 5921837
    Abstract: The present invention relates to a method and device for assembling two elements spaced apart by means of a peripheral seal, consisting of adding a seal on a surface of a first element facing a surface to be assembled of a second element, bringing the assembly thus constituted, in vacuum conditions, to a temperature enabling the melting of the seal while temporarily maintaining, by means of spacers having a thickness higher than the thickness of the seal and distributed outside the seal, the surface of the second element distant from the seal, and enabling the elements to come closer to each other to assemble them, sealably, by means of the melting seal.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: July 13, 1999
    Assignee: Pixtech S.A.
    Inventors: Shinji Kanagawa, Maurice Lobet, Jean-Marc Sol, Stephane Mougin