Patents by Inventor Jean-Michel Geets

Jean-Michel Geets has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230290532
    Abstract: A system for converting an electron beam into a photon beam includes an electron accelerator configured for generating an electron beam of accelerated electrons along an irradiation axis (Z); a scanning unit; a focusing unit for forming a focused beam converging towards a first focusing point (Fx) located on the irradiation axis (Z); a converting unit located between the focusing unit and the first focusing point (Fx), and comprising one or more bremsstrahlung converters, configured for converting the focused beam into a photon beam, wherein the one or more bremsstrahlung converters are curved such that the focused beam intersects each of the one or more bremsstrahlung converters with an intersecting angle comprised between 65° and 115° at all points, preferably between 75° and 105° at all points; and a target holder configured for holding a target.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 14, 2023
    Inventors: Jean-Michel GEETS, Frederic Stichelbaut, Sebastien De Neuter, Michel Abs, Samy Bertrand, Willem Leysen, Lucia Popescu
  • Patent number: 11594345
    Abstract: The embodiments of the present disclosure provide a method for producing Ac-225 from Ra-226, comprising submitting Ra-226 to a photo-nuclear process, collecting an electrochemical precipitation of an Ac-225 on a cathode in a recipient, removing the cathode from the recipient after the electrochemical precipitation of the Ac-225, transferring the cathode to a hot cell environment, and extracting the Ac-225 from the cathode in the hot cell environment. The Ra-226 may comprise a liquid solution in the recipient, and submitting Ra-226 to the photo-nuclear process may comprise irradiating the Ra-226 to produce Ra-225. The Ra-225 may decay into Ac-225 upon irradiation of the Ra-226.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: February 28, 2023
    Assignee: Ion Beam Applications
    Inventors: Jozef Comor, Jean-Michel Geets, Gerd-Jürgen Beyer
  • Patent number: 11250964
    Abstract: A capsule for the transfer of a target material in a conveying system between a target irradiation station and a collecting station comprising: a beamline channel for the passage of an energetic beam irradiating the target material, a target holder holding the target material or a substrate backing the target material at a glancing angle with respect to the beamline channel axis, a degrader foil positioned across the beamline channel for degrading an energy of the energetic beam upstream of the target material, a target cooling inlet and a target cooling outlet for passage of a cooling fluid in a target cooling duct in a vicinity of the target holder such that the target material can be cooled during an irradiation, and a degrader foil cooling inlet and a degrader foil cooling outlet for passage of a cooling gas in a vicinity of the degrader foil.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: February 15, 2022
    Assignee: ION BEAM APPLICATIONS S.A.
    Inventors: Jozef Comor, Jean-Michel Geets, Benoît Nactergal
  • Publication number: 20210210245
    Abstract: The embodiments of the present disclosure provide a method for producing Ac-225 from Ra-226, comprising submitting Ra-226 to a photo-nuclear process, collecting an electrochemical precipitation of an Ac-225 on a cathode in a recipient, removing the cathode from the recipient after the electrochemical precipitation of the Ac-225, transferring the cathode to a hot cell environment, and extracting the Ac-225 from the cathode in the hot cell environment. The Ra-226 may comprise a liquid solution in the recipient, and submitting Ra-226 to the photo-nuclear process may comprise irradiating the Ra-226 to produce Ra-225. The Ra-225 may decay into Ac-225 upon irradiation of the Ra-226.
    Type: Application
    Filed: November 25, 2020
    Publication date: July 8, 2021
    Applicant: Ion Beam Applications
    Inventors: Jozef COMOR, Jean-Michel GEETS, Gerd-Jürgen BEYER
  • Patent number: 10806019
    Abstract: A cyclotron for accelerating a beam of charged particles and extracting the beam. The cyclotron includes a vacuum chamber; a target support element sealed and coupled to the vacuum chamber and including a tubular channel leading to a target; first energy specific extraction kit including a first stripper assembly with a stripper located at a first stripping position for stripping charged particles at a first energy and a second energy specific extraction kit for driving modified charged particles of second energy along a second extraction path towards a target holder, wherein the energy specific extraction kit includes: a second stripper assembly with a stripper located at a second stripping position for stripping charged particles at a second energy and an insert for modifying an orientation of the tubular channel to match the second extraction path such that the modified charged particles of second energy intercept the target holder.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 13, 2020
    Assignee: Ion Beam Application S.A.
    Inventors: Sébastien De Neuter, Jean-Michel Geets, Benoit Nactergal, Vincent Nuttens, Jarno Van De Walle
  • Publication number: 20200043621
    Abstract: A capsule for the transfer of a target material in a conveying system between a target irradiation station and a collecting station comprising: a beamline channel for the passage of an energetic beam irradiating the target material, a target holder holding the target material or a substrate backing the target material at a glancing angle with respect to the beamline channel axis, a degrader foil positioned across the beamline channel for degrading an energy of the energetic beam upstream of the target material, a target cooling inlet and a target cooling outlet for passage of a cooling fluid in a target cooling duct in a vicinity of the target holder such that the target material can be cooled during an irradiation, and a degrader foil cooling inlet and a degrader foil cooling outlet for passage of a cooling gas in a vicinity of the degrader foil.
    Type: Application
    Filed: July 8, 2019
    Publication date: February 6, 2020
    Applicant: Ion Beam Applications S.A.
    Inventors: Jozef COMOR, Jean-Michel GEETS, Benoît NACTERGAL
  • Publication number: 20200029421
    Abstract: A cyclotron for accelerating a beam of charged particles and extracting the beam. The cyclotron includes a vacuum chamber; a target support element sealed and coupled to the vacuum chamber and including a tubular channel leading to a target; first energy specific extraction kit including a first stripper assembly with a stripper located at a first stripping position for stripping charged particles at a first energy and a second energy specific extraction kit for driving modified charged particles of second energy along a second extraction path towards a target holder, wherein the energy specific extraction kit includes: a second stripper assembly with a stripper located at a second stripping position for stripping charged particles at a second energy and an insert for modifying an orientation of the tubular channel to match the second extraction path such that the modified charged particles of second energy intercept the target holder.
    Type: Application
    Filed: December 20, 2018
    Publication date: January 23, 2020
    Applicant: Ion Beam Applications S.A.
    Inventors: Sébastien DE NEUTER, Jean-Michel GEETS, Benoit NACTERGAL, Vincent NUTTENS, Jarno VAN DE WALLE
  • Patent number: 9941027
    Abstract: The invention relates to a method for producing a radioisotope, which method comprises irradiating a volume of radioisotope-precursor fluid contained in a sealed cell of a target using a beam of particles of a given current, which beam is produced by a particle accelerator. The target is cooled and the internal pressure in the sealed cell is measured. During the irradiation, the internal pressure (P) in the sealed cell is allowed to vary freely. The irradiation is interrupted or its intensity is reduced when the internal pressure (P) in the sealed cell departs from a first tolerated range defined depending on various parameters that influence the variation in the internal pressure in the sealed cell during the irradiation. These parameters for example comprise, for a given target, particle beam and radioisotope-precursor fluid: the degree of filling of the hermetic cell, the cooling power used to cool the given target, and the beam current (I).
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: April 10, 2018
    Assignee: ION BEAM APPLICATIONS S.A.
    Inventors: Eric Kral, Xavier Wilputte, Michel Ghyoot, Jean-Michel Geets
  • Patent number: 9922743
    Abstract: The invention relates to a device (1) for producing radioisotopes by irradiating a target fluid using a particle beam (13). This device comprises an irradiation cell (7) that includes a cavity (3) for receiving the target fluid. A non-cryogenic cooling device cools the walls of the cavity (3). The cavity (3) has an inclined surface (15) downwardly delimiting the cavity (3) so as to evacuate the target fluid, which condenses on contact with the cooled walls, under gravity towards a metal foil (4) which closes off this cavity (3). The inclined surface (15) intersects the plane formed by the metal foil (4), making an acute angle (a) with said plane, so as to form with the metal foil (4) a wedge-shaped zone (18) capable of collecting, by gravity, the condensed target fluid.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 20, 2018
    Assignee: Ion Beam Applications S.A.
    Inventors: Bernard Lambert, Jean-Michel Geets, Andrea Cambriani, Michel Degeyter, Maxim Kiselev
  • Patent number: 9414479
    Abstract: The present invention relates to an apparatus for producing a radioisotope by irradiating a target fluid comprising a precursor of said radioisotope with a particle beam produced by a particle accelerator, the apparatus comprising: —a housing comprising a target cavity for receiving said target fluid, said housing having an opening for allowing the passage of the said particle beam into the said cavity; —a dual foil flange for closing said opening of the target cavity, said dual foil flange comprising: —a standoff comprising a central hole; —a first and a second foil able to allow the passage of the said particle beam and located respectively on a first side and a second side of the said standoff, covering the said central hole and forming a cooling cavity; —a first flange and a second flange for sealing respectively the said first and second foil on said standoff; —at least an inlet channel and at least an outlet channel, for flowing a cooling fluid through the cavity of the dual foil flange; —guiding means
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 9, 2016
    Assignee: Ion Beam Applications S.A.
    Inventors: Bernard Lambert, Jean-Michel Geets, Jozef J. Comor, Djuro Jovanovic
  • Publication number: 20140376677
    Abstract: The invention relates to a method for producing a radioisotope, which method comprises irradiating a volume of radioisotope-precursor fluid contained in a sealed cell of a target using a beam of particles of a given current, which beam is produced by a particle accelerator. The target is cooled and the internal pressure in the sealed cell is measured. During the irradiation, the internal pressure (P) in the sealed cell is allowed to vary freely. The irradiation is interrupted or its intensity is reduced when the internal pressure (P) in the sealed cell departs from a first tolerated range defined depending on various parameters that influence the variation in the internal pressure in the sealed cell during the irradiation. These parameters for example comprise, for a given target, particle beam and radioisotope-precursor fluid: the degree of filling of the hermetic cell, the cooling power used to cool the given target, and the beam current (I).
    Type: Application
    Filed: October 10, 2012
    Publication date: December 25, 2014
    Inventors: Eric Kral, Xavier Wilputte, Michel Ghyoot, Jean-Michel Geets
  • Publication number: 20130266105
    Abstract: The invention relates to a device (1) for producing radioisotopes by irradiating a target fluid using a particle beam (13). This device comprises an irradiation cell (7) that includes a cavity (3) for receiving the target fluid. A non-cryogenic cooling device cools the walls of the cavity (3). The cavity (3) has an inclined surface (15) downwardly delimiting the cavity (3) so as to evacuate the target fluid, which condenses on contact with the cooled walls, under gravity towards a metal foil (4) which closes off this cavity (3). The inclined surface (15) intersects the plane formed by the metal foil (4), making an acute angle (a) with said plane, so as to form with the metal foil (4) a wedge-shaped zone (18) capable of collecting, by gravity, the condensed target fluid.
    Type: Application
    Filed: October 27, 2011
    Publication date: October 10, 2013
    Inventors: Bernard Lambert, Jean-Michel Geets, Andrea Cambriani, Michel Degeyter, Maxim Kiselev
  • Publication number: 20130163708
    Abstract: The present invention relates to an apparatus for producing a radioisotope by irradiating a target fluid comprising a precursor of said radioisotope with a particle beam produced by a particle accelerator, the apparatus comprising:—a housing comprising a target cavity for receiving said target fluid, said housing having an opening for allowing the passage of the said particle beam into the said cavity;—a dual foil flange for closing said opening of the target cavity, said dual foil flange comprising:—a standoff comprising a central hole;—a first and a second foil able to allow the passage of the said particle beam and located respectively on a first side and a second side of the said standoff, covering the said central hole and forming a cooling cavity;—a first flange and a second flange for sealing respectively the said first and second foil on said standoff;—at least an inlet channel and at least an outlet channel, for flowing a cooling fluid through the cavity of the dual foil flange;—guiding means for pos
    Type: Application
    Filed: May 31, 2011
    Publication date: June 27, 2013
    Inventors: Bernard Lambert, Jean-Michel Geets, Jozef J. Comor, Djuro Jovanovic