Patents by Inventor Jean-Pierre Dolle

Jean-Pierre Dolle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10668102
    Abstract: This application discloses alginate microencapsulation-mediated differentiation of embryonic stem cells and use of the stem cell differentiation method for the development of effective treatment of various diseases and disorders. The microencapsulation of embryonic stem (ES) cells results in decreased cell aggregation and enhanced neural lineage differentiation through incorporating the soluble inducer retinoic acid (RA) into the permeable microcapsule system. This differentiation process can be augmented by differentiation pathway regulators such as PPAR agonists.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 2, 2020
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Jean-Pierre Dolle, Rene S. Schloss, Martin L. Yarmush
  • Publication number: 20170100436
    Abstract: This application discloses alginate microencapsulation-mediated differentiation of embryonic stem cells and use of the stem cell differentiation method for the development of effective treatment of various diseases and disorders. The microencapsulation of embryonic stem (ES) cells results in decreased cell aggregation and enhanced neural lineage differentiation through incorporating the soluble inducer retinoic acid (RA) into the permeable microcapsule system. This differentiation process can be augmented by differentiation pathway regulators such as PPAR agonists.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 13, 2017
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Jean-Pierre Dolle, Rene S. Schloss, Martin L. Yarmush
  • Publication number: 20120020931
    Abstract: This application discloses alginate microencapsulation-mediated differentiation of embryonic stem cells and use of the stem cell differentiation method for the development of effective treatment of various diseases and disorders. The microencapsulation of embryonic stem (ES) cells results in decreased cell aggregation and enhanced neural lineage differentiation through incorporating the soluble inducer retinoic acid (RA) into the permeable microcapsule system. This application also discloses a micro-encapsulation system for immobilizing mesenchymal stromal cells (MSCs) while sustaining the molecular communication. Thus, the invention provides the use of encapsulated mesenchymal stromal cells in the cellular transplantation therapies. Moreover, the invention provides methods for delivery of encapsulated MSCs into the central nervous system and therapies derived therefrom, such as, the treatment of spinal cord injury (SCI) and other inflammatory conditions.
    Type: Application
    Filed: June 2, 2011
    Publication date: January 26, 2012
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Martin L. Yarmush, Rene S. Schloss, Martin Grumet, Jeffrey Barminko, Jae Hwan Kim, Tim Maguire, Jean-Pierre Dolle, Lulu Li