Patents by Inventor Jean Pieters

Jean Pieters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8993244
    Abstract: The invention relates to an assay for the identification of a compound having immunosuppressant activity, wherein a candidate compound is analyzed whether it blocks the Ca2+ flux in coronin 1 expressing cells and/or in coronin 1 negative cells. A candidate compound is identified as having immunosuppressant activity if it blocks the Ca2+ flux specifically in coronin 1 expressing cells. Further described are upstream assays wherein the impact of a candidate compound on coronin 1 trimerization is measured, and downstream assays wherein the impact of a candidate compound on diacyl glycerol (DAG) generation, phosphatidylinositol-4,5-biphosphate (PIP2) levels and/or inositol-1,4,5-triphosphate (InsP3) generation or on nuclear factor of activated T cells (NFAT) nuclear localization is determined.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: March 31, 2015
    Assignee: University of Basel
    Inventors: Jean Pieters, Rajesh Jayac Han Dran, Philipp Mueller
  • Patent number: 8728438
    Abstract: The invention relates to the treatment of mycobacterial infections, autoimmune disorders, lymphoproliferative disorders and induction of immunosuppression following transplantation using coronin 1 and modulators of coronin 1. Particular modulators of coronin 1 are compounds which inhibit the production of coronin 1 or the formation of active coronin 1 from a coronin 1 precursor, partly or entirely inactivate coronin 1, inhibit concentration of coronin 1 at the site of T cell activation, or inhibit the coronin 1 mediated signaling pathway downstream of the T cell receptor. Examples of such modulators are antibody or antibody fragments, coronin 1 peptide fragments or corresponding phosphopeptides, or anti-sense oligonucleotides, e.g. siRNA or shRNA.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 20, 2014
    Assignee: University of Basel
    Inventors: Jean Pieters, Rajesh Jayachandran
  • Publication number: 20130336966
    Abstract: The invention relates to the treatment of mycobacterial infections, autoimmune disorders, lymphoproliferative disorders and induction of immunosuppression following transplantation using coronin 1 and modulators of coronin 1. Particular modulators of coronin 1 are compounds which inhibit the production of coronin 1 or the formation of active coronin 1 from a coronin 1 precursor, partly or entirely inactivate coronin 1, inhibit concentration of coronin 1 at the site of T cell activation, or inhibit the coronin 1 mediated signaling pathway downstream of the T cell receptor. Examples of such modulators are antibody or antibody fragments, coronin 1 peptide fragments or corresponding phosphopeptides, or anti-sense oligonucleotides, e.g. siRNA or shRNA.
    Type: Application
    Filed: July 29, 2013
    Publication date: December 19, 2013
    Applicant: UNIVERSITY OF BASEL
    Inventors: Jean PIETERS, Rajesh JAYACHANDRAN
  • Patent number: 8518372
    Abstract: The invention relates to the treatment of mycobacterial infections, autoimmune disorders, lymphoproliferative disorders and induction of immunosuppression following transplantation using coronin 1 and modulators of coronin 1. Particular modulators of coronin 1 are compounds which inhibit the production of coronin 1 or the formation of active coronin 1 from a coronin 1 precursor, partly or entirely inactivate coronin 1, inhibit concentration of coronin 1 at the site of T cell activation, or inhibit the coronin 1 mediated signaling pathway downstream of the T cell receptor. Examples of such modulators are antibody or antibody fragments, coronin 1 peptide fragments or corresponding phosphopeptides, or anti-sense oligonucleotides, e.g. siRNA or shRNA.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: August 27, 2013
    Assignee: University of Basel
    Inventors: Jean Pieters, Rajesh Jayachandran
  • Publication number: 20110123994
    Abstract: The invention relates to an assay for the identification of a compound having immunosuppressant activity, wherein a candidate compound is analyzed whether it blocks the Ca2+ flux in coronin 1 expressing cells and/or in coronin 1 negative cells. A candidate compound is identified as having immunosuppressant activity if it blocks the Ca2+ flux specifically in coronin 1 expressing cells. Further described are upstream assays wherein the impact of a candidate compound on coronin 1 trimerization is measured, and downstream assays wherein the impact of a candidate compound on diacyl glycerol (DAG) generation, phosphatidylinositol-4,5-biphosphate (PIP2) levels and/or inositol-1,4,5-triphosphate (InsP3) generation or on nuclear factor of activated T cells (NFAT) nuclear localization is determined.
    Type: Application
    Filed: March 12, 2009
    Publication date: May 26, 2011
    Applicant: UNIVERSITY OF BASEL
    Inventors: Jean Pieters, Rajesh Jayac Han Dran, Philipp Mueller
  • Publication number: 20100008931
    Abstract: The invention relates to the treatment of mycobacterial infections, autoimmune disorders, lymphoproliferative disorders and induction of immunosuppression following transplantation using coronin 1 and modulators of coronin 1. Particular modulators of coronin 1 are compounds which inhibit the production of coronin 1 or the formation of active coronin 1 from a coronin 1 precursor, partly or entirely inactivate coronin 1, inhibit concentration of coronin 1 at the site of T cell activation, or inhibit the coronin 1 mediated signaling pathway downstream of the T cell receptor Examples of such modulators are antibody or antibody fragments, coronin 1 peptide fragments or corresponding phosphopeptides, or anti-sense oligonucleotides, e.g. siRNA or shRNA.
    Type: Application
    Filed: March 23, 2007
    Publication date: January 14, 2010
    Inventors: Jean Pieters, Rajesh Jayachandran