Patents by Inventor Jean-Stephane Vigier

Jean-Stephane Vigier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11320526
    Abstract: A communication unit (300) is described that includes a plurality of cascaded devices that includes at least one master device and at least one slave device configured in a master-slave arrangement. The at least one master device comprises a modulator circuit (362) configured to: receive a system clock signal and a frame start signal; modulate the system clock signal with the frame start signal to produce a modulated master-slave clock signal (384); and transmit the modulated master-slave clock signal (384) to the at least one slave device. The at least one slave device comprises a demodulator circuit (364) configured to: receive and demodulate the modulated master-slave clock signal (384); and re-create therefrom the system clock signal (388, 385) and the frame start signal (390, 386).
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: May 3, 2022
    Assignee: NXP USA, Inc.
    Inventors: Didier Salle, Cristian Pavao Moreira, Dominique Delbecq, Olivier Doaré, Jean-Stephane Vigier, Birama Goumballa
  • Patent number: 11143746
    Abstract: A chirp linearity detector, integrated circuit, and method are provided. The chirp linearity detector comprises a phase-locked loop (PLL) frequency sampling circuit and a frequency sweep linearity measuring circuit. The PLL frequency sampling circuit comprises a frequency divider circuit for receiving a PLL output signal from a PLL and for providing a frequency divided output signal, a first low pass filter circuit for receiving the frequency divided output signal, for reducing harmonic mixing, and for providing a mixer input signal, a mixer circuit for receiving the mixer input signal, for mixing the mixer input signal with a local oscillator signal, and for providing a mixer output signal, a second low pass filter circuit for performing anti-aliasing filtering and for providing an analog-to-digital converter (ADC) input signal, and an ADC circuit for digitizing the ADC input signal and for providing a digital output signal.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 12, 2021
    Assignee: NXP USA, Inc.
    Inventors: Jean-Stéphane Vigier, Dominique Delbecq, Cristian Pavao-Moreira, Andres Barrilado-Gonzalez
  • Publication number: 20210302535
    Abstract: A chirp linearity detector, integrated circuit, and method are provided. The chirp linearity detector comprises a phase-locked loop (PLL) frequency sampling circuit and a frequency sweep linearity measuring circuit. The PLL frequency sampling circuit comprises a frequency divider circuit for receiving a PLL output signal from a PLL and for providing a frequency divided output signal, a first low pass filter circuit for receiving the frequency divided output signal, for reducing harmonic mixing, and for providing a mixer input signal, a mixer circuit for receiving the mixer input signal, for mixing the mixer input signal with a local oscillator signal, and for providing a mixer output signal, a second low pass filter circuit for performing anti-aliasing filtering and for providing an analog-to-digital converter (ADC) input signal, and an ADC circuit for digitizing the ADC input signal and for providing a digital output signal.
    Type: Application
    Filed: August 17, 2018
    Publication date: September 30, 2021
    Inventors: Jean-Stéphane VIGIER, Dominique DELBECQ, Cristian PAVAO-MOREIRA, Andres BARRILADO-GONZALEZ
  • Patent number: 11131762
    Abstract: A fast chirp Phase Locked Loop with a boosted return time includes a Voltage Controlled Oscillator, VCO, generating a Frequency Modulated Continuous Waveform, FMCW. The VCO responds to a filtered output voltage of a filter connected to a charge pump. A digital controller modifies the FMCW to generate a chirp phase and a return phase. The chirp phase includes a first linear change of the FMCW from a start frequency to a stop frequency. The return phase includes a second linear change of the FMCW from the stop frequency to the start frequency. A boost circuit connects to the digital controller and the filter. The boost circuit supplies a boost current during the return phase. The boost current is proportional to a return slope of the return phase and inversely proportional to a VCO gain of the VCO.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: September 28, 2021
    Assignee: NXP USA, INC.
    Inventors: Jean-Stephane Vigier, Didier Salle, Cristian Pavao-Moreira, Julien Orlando
  • Patent number: 11131763
    Abstract: A fast chirp Phase Locked Loop with a phase preset includes a Voltage Controlled Oscillator, VCO, generating a Frequency Modulated Continuous Waveform, FMCW. The VCO responds to a filtered output voltage of a filter connected to a charge pump. A digital controller modifies the FMCW to generate a chirp phase and a return phase. The chirp phase includes a first linear change of the FMCW from a start frequency to a stop frequency. The return phase includes a second linear change of the FMCW from the stop frequency to the start frequency. A phase preset circuit connects to the digital controller and the filter. The phase preset circuit supplies a phase preset current during a start frequency time preceding the chirp phase. The phase preset current is proportional to a VCO gain of the VCO and inversely proportional to a chirp current during the chirp phase.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: September 28, 2021
    Assignee: NXP USA, INC.
    Inventors: Jean-Stephane Vigier, Didier Salle, Cristian Pavao-Moreira, Julien Orlando
  • Patent number: 11054513
    Abstract: A communication unit (700) is described that includes a plurality of cascaded devices that comprise at least one master device (710) and at least one slave device (720, 723) configured in a master-slave arrangement. The at least one master device (710) and at least one slave device (720, 723) each comprise: an analog-to-digital converter, ADC, (741, 742) configured to use a same re-created system clock signal (788, 790) to align respective sampling instants between each ADC (741, 742). The at least one master device (710) comprises: a clock generation circuit comprising an internally-generated reference phase locked loop circuit (708), configured to output a system clock signal (782, 784); and a modulator circuit (762) coupled to the clock generation circuit and configured to receive and distribute the system clock signal (784).
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 6, 2021
    Assignee: NXP USA, INC.
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Patent number: 10700672
    Abstract: An electronic system includes a clock generation circuit to generate a clock signal; and a duty cycle monitoring circuit, DTC, to monitor a duty cycle of the generated clock signal. The DTC includes a differential signal generator circuit to generate an inverted and a non-inverted representation of the generated clock signal. An averaging circuit averages the non-inverted representation and the inverted representation of the generated clock signal. A comparison circuit includes at least a first comparator to compare the averaged non-inverted representation of the generated clock signal with a second respective reference voltage threshold and a second comparator configured to compare the averaged inverted representation with a first respective reference voltage threshold.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: June 30, 2020
    Assignee: NXP USA, Inc.
    Inventors: Pierre Savary, Cristian Pavao Moreira, Matthis Bouchayer, Jean-Stephane Vigier
  • Patent number: 10644872
    Abstract: A communication unit (400, 500) is described that includes a plurality of cascaded devices that comprise at least one master device and at least one slave device configured in a master-slave arrangement and configured to process at least one of: transmit signals, and receive signals. The at least one of at least one master device and at least one slave device comprises a demodulator circuit (564, 565) configured to: receive a modulated embedded master-slave clock signal (584) that comprises a system clock signal (582) with an embedded frame start signal (580); demodulate the modulated embedded master-slave clock signal (584); and re-create therefrom the system clock signal (588, 585) and the frame start signal (590, 586).
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 5, 2020
    Assignee: NXP USA, INC.
    Inventors: Cristian Pavao Moreira, Birama Goumballa, Jean-Stephane Vigier, Matthis Bouchayer
  • Publication number: 20200136599
    Abstract: An electronic system includes a clock generation circuit to generate a clock signal; and a duty cycle monitoring circuit, DTC, to monitor a duty cycle of the generated clock signal. The DTC includes a differential signal generator circuit to generate an inverted and a non-inverted representation of the generated clock signal. An averaging circuit averages the non-inverted representation and the inverted representation of the generated clock signal. A comparison circuit includes at least a first comparator to compare the averaged non-inverted representation of the generated clock signal with a second respective reference voltage threshold and a second comparator configured to compare the averaged inverted representation with a first respective reference voltage threshold.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 30, 2020
    Inventors: Pierre SAVARY, Cristian Pavao Moreira, Matthis Bouchayer, Jean-Stephane Vigier
  • Patent number: 10615958
    Abstract: A communication unit (400, 500) is described that includes a plurality of cascaded devices that comprise at least one master device and at least one slave device configured in a master-slave arrangement and configured to process at least one of: transmit signals, and receive signals. The at least one master device includes: a clock generation circuit configured to output a system clock signal; a modulator circuit (562) coupled to the clock generation circuit and configured to receive the system clock signal and a frame start signal and embed the frame start signal into the system clock signal to produce a modulated embedded master-slave clock signal (584); and transmit the modulated embedded master-slave clock signal (584) to the at least one slave device to synchronise the system clock signal and the frame start signal between the at least one master device (510) and at least one slave device (520).
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: April 7, 2020
    Assignee: NXP USA, INC.
    Inventors: Jean-Stephane Vigier, Cristian Pavao Moreira, Matthis Bouchayer
  • Publication number: 20200057140
    Abstract: A chirp linearity detector, integrated circuit, and method are provided. The chirp linearity detector comprises a phase-locked loop (PLL) frequency sampling circuit and a frequency sweep linearity measuring circuit. The PLL frequency sampling circuit comprises a frequency divider circuit for receiving a PLL output signal from a PLL and for providing a frequency divided output signal, a first low pass filter circuit for receiving the frequency divided output signal, for reducing harmonic mixing, and for providing a mixer input signal, a mixer circuit for receiving the mixer input signal, for mixing the mixer input signal with a local oscillator signal, and for providing a mixer output signal, a second low pass filter circuit for performing anti-aliasing filtering and for providing an analog-to-digital converter (ADC) input signal, and an ADC circuit for digitizing the ADC input signal and for providing a digital output signal.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 20, 2020
    Inventors: Jean-Stephane Vigier, Dominique Delbecq, Cristian Pavao Moreira, Andres Barrilado Gonzalez
  • Publication number: 20200003883
    Abstract: A communication unit (700) is described that includes a plurality of cascaded devices that comprise at least one master device (710) and at least one slave device (720, 723) configured in a master-slave arrangement. The at least one master device (710) and at least one slave device (720, 723) each comprise: an analog-to-digital converter, ADC, (741, 742) configured to use a same re-created system clock signal (788, 790) to align respective sampling instants between each ADC (741, 742). The at least one master device (710) comprises: a clock generation circuit comprising an internally-generated reference phase locked loop circuit (708), configured to output a system clock signal (782, 784); and a modulator circuit (762) coupled to the clock generation circuit and configured to receive and distribute the system clock signal (784).
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Publication number: 20200007310
    Abstract: A communication unit (400, 500) is described that includes a plurality of cascaded devices that comprise at least one master device and at least one slave device configured in a master-slave arrangement and configured to process at least one of: transmit signals, and receive signals. The at least one of at least one master device and at least one slave device comprises a demodulator circuit (564, 565) configured to: receive a modulated embedded master-slave clock signal (584) that comprises a system clock signal (582) with an embedded frame start signal (580); demodulate the modulated embedded master-slave clock signal (584); and re-create therefrom the system clock signal (588, 585) and the frame start signal (590, 586).
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Cristian Pavao Moreira, Birama Goumballa, Jean-Stephane Vigier, Matthis Bouchayer
  • Publication number: 20200003882
    Abstract: A communication unit (300) is described that includes a plurality of cascaded devices that includes at least one master device and at least one slave device configured in a master-slave arrangement. The at least one master device comprises a modulator circuit (362) configured to: receive a system clock signal and a frame start signal; modulate the system clock signal with the frame start signal to produce a modulated master-slave clock signal (384); and transmit the modulated master-slave clock signal (384) to the at least one slave device. The at least one slave device comprises a demodulator circuit (364) configured to: receive and demodulate the modulated master-slave clock signal (384); and re-create therefrom the system clock signal (388, 385) and the frame start signal (390, 386).
    Type: Application
    Filed: June 20, 2019
    Publication date: January 2, 2020
    Inventors: Didier Salle, Cristian Pavao Moreira, Dominique Delbecq, Olivier Doaré, Jean-Stephane Vigier, Birama Goumballa
  • Publication number: 20200007309
    Abstract: A communication unit (400, 500) is described that includes a plurality of cascaded devices that comprise at least one master device and at least one slave device configured in a master-slave arrangement and configured to process at least one of: transmit signals, and receive signals. The at least one master device includes: a clock generation circuit configured to output a system clock signal; a modulator circuit (562) coupled to the clock generation circuit and configured to receive the system clock signal and a frame start signal and embed the frame start signal into the system clock signal to produce a modulated embedded master-slave clock signal (584); and transmit the modulated embedded master-slave clock signal (584) to the at least one slave device to synchronise the system clock signal and the frame start signal between the at least one master device (510) and at least one slave device (520).
    Type: Application
    Filed: June 20, 2019
    Publication date: January 2, 2020
    Inventors: Jean-Stephane Vigier, Cristian Pavao Moreira, Matthis Bouchayer
  • Publication number: 20200003862
    Abstract: A communication unit (900) includes a plurality of cascaded devices that comprise at least one master device (910) and at least one slave device (920, 923) configured in a master-slave arrangement. The at least one master device (910) and at least one slave device (920, 923) each include: a demodulator circuit (964, 965) configured to receive a distributed reference clock signal (984) and re-create a system clock signal (988, 990) therefrom; a clock generation circuit comprising an internally-generated reference phase locked loop configured to receive the re-created system clock signal (988, 990) to create a master-slave clock signal; and an analog-to-digital converter, ADC, (941, 942) coupled to the reference phase locked loop and configured to use a same master-slave clock signal (988, 990) to align respective sampling instants between each ADC (941, 942) of the at least one master device (910) and at least one slave device (920, 923).
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Publication number: 20190377076
    Abstract: A fast chirp Phase Locked Loop (70) with a phase preset includes a Voltage Controlled Oscillator, VCO, (12) generating a Frequency Modulated Continuous Waveform, FMCW, (14). The VCO responds to a filtered output voltage (74) of a filter (72) connected to a charge pump (28). A digital controller (82) modifies the FMCW to generate a chirp phase (304) and a return phase (300). The chirp phase includes a first linear change of the FMCW from a start frequency (202) to a stop frequency (204). The return phase includes a second linear change of the FMCW from the stop frequency to the start frequency. A phase preset circuit (86) connects to the digital controller and the filter. The phase preset circuit supplies a phase preset current (98) during a start frequency time (302) preceding the chirp phase. The phase preset current is proportional to a VCO gain of the VCO and inversely proportional to a chirp current during the chirp phase.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 12, 2019
    Inventors: Jean-Stephane Vigier, Didier Salle, Cristian Pavao-Moreira, Julien Orlando
  • Publication number: 20190377078
    Abstract: A fast chirp Phase Locked Loop (70) with a boosted return time includes a Voltage Controlled Oscillator, VCO, (12) generating a Frequency Modulated Continuous Waveform, FMCW, (14). The VCO responds to a filtered output voltage (74) of a filter (72) connected to a charge pump (28). A digital controller (82) modifies the FMCW to generate a chirp phase (304) and a return phase (300). The chirp phase includes a first linear change of the FMCW from a start frequency (202) to a stop frequency (204). The return phase includes a second linear change of the FMCW from the stop frequency to the start frequency. A boost circuit (86) connects to the digital controller and the filter. The boost circuit supplies a boost current (98) during the return phase. The boost current is proportional to a return slope of the return phase and inversely proportional to a VCO gain of the VCO.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 12, 2019
    Inventors: Jean-Stephane Vigier, Didier Salle, Cristian Pavao-Moreira, Julien Orlando
  • Patent number: 9379721
    Abstract: An electronic device has a capacitive arrangement for controlling a frequency characteristic. The capacitive arrangement has varactor banks having a number of parallel coupled varactors and a control input for switching the respective varactors on or off. A main varactor bank has N varactors and a series varactor bank has A varactors, the main varactor bank being connected in series with the series varactor bank. A shunt varactor bank of B varactors may be coupled to a ground reference and connected between the main varactor bank and the series varactor bank. When a varactor is switched in the main varactor bank, it provides an equivalent capacitance step size (or frequency step) smaller than size of a capacitance step when switching a single varactor on or off. According to the number of varactors selected in the shunt varactor, B, this frequency step can be made programmable.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: June 28, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cristian Pavao-Moreira, Dominique Delbecq, Jean-Stephane Vigier
  • Patent number: 9197403
    Abstract: An electronic device has a calibration arrangement for controlling a frequency characteristic of a PLL circuit having a phase comparator having an output for generating a phase difference signal, a voltage controlled oscillator and a divider. The divisor of the divider is programmable, and the oscillator is also directly modulated by an oscillator modulation signal. A modulation unit has a modulation input for receiving a modulation signal and generates the oscillator modulation signal and the divisor such that modulation generates a predefined change of the output frequency and a change of the divisor proportional to said predefined change. The calibration arrangement receives the phase difference signal, and has a ripple detector for providing a detector output signal by detecting a ripple on the phase difference signal correlated to edges in the modulation signal. A calibration control unit adjusts the oscillator modulation signal based on the detector output signal such that the ripple is reduced.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Laurent Gauthier, Dominique Delbecq, Jean-Stephane Vigier