Patents by Inventor Jeanette E. Owejan

Jeanette E. Owejan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9337494
    Abstract: A fuel cell includes a first electrode and a second electrode with an ion conducting polymer membrane positioned between these electrodes. The fuel cell further comprises a first OER catalyst-containing ionic layer positioned between the first electrode and the ion conducting polymer membrane. The first OER catalyst-containing layer includes an OER catalyst-containing compound, an ion conducting polymer and carbon. Characteristically, the weight ratio of ion conducting polymer to carbon is from about 10 to about 100. A method for forming the fuel cell is also provided.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: May 10, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jingxin Zhang, Jeanette E. Owejan
  • Patent number: 9065140
    Abstract: A substantially crack-free electrode layer is described. The substantially crack-free electrode layer includes a substrate; and a substantially crack-free electrode layer on the substrate, the electrode layer comprising a catalyst, an ionomer, and a layered silicate reinforcement. Methods of making the electrode layer, electrode ink compositions, and membrane electrode assemblies incorporating the electrode layer are also described.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: June 23, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Bradley M. Houghtaling, Jeanette E. Owejan
  • Patent number: 8828613
    Abstract: Fuel-cell assemblies containing a membrane electrode assembly, methods for preparing the membrane electrode assembly, and methods for functionalizing catalytic surfaces of catalyst particles in the membrane electrode assembly of the fuel cell assembly have been described. The fuel-cell assemblies and their membrane electrode assemblies contain cathode catalyst materials having catalytic surfaces that are functionalized with cyano groups to improve catalyst activity. The cathode catalyst materials may include a catalytic metal such as platinum or a platinum alloy. The cyano groups may be derived from a cyanide source that is electro-oxidized onto the catalytic surfaces. Nonlimiting examples of cyanide sources include amino acids such as glycine, alanine, and serine.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jingxin Zhang, Rohit Makharia, Jeanette E. Owejan
  • Publication number: 20140141353
    Abstract: One exemplary embodiment may include a fuel cell comprising an electrolyte layer and an electrolyte stabilizing agent. The electrolyte stabilizing agent is disposed in an electrochemically non-active layer and configured to migrate from the non-active layer to the electrolyte layer. Another exemplary embodiment may include a microporous layer comprising an electrolyte stabilizing agent.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 22, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: TODD W. HUSTON, JEANETTE E. OWEJAN
  • Patent number: 8685580
    Abstract: One exemplary embodiment may include a fuel cell comprising an electrolyte layer and an electrolyte stabilizing agent. The electrolyte stabilizing agent is disposed in an electrochemically non-active layer and configured to migrate from the non-active layer to the electrolyte layer. Another exemplary embodiment may include a microporous layer comprising an electrolyte stabilizing agent.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 1, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd W Huston, Jeanette E. Owejan
  • Patent number: 8658331
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20130260267
    Abstract: Fuel-cell assemblies containing a membrane electrode assembly, methods for preparing the membrane electrode assembly, and methods for functionalizing catalytic surfaces of catalyst particles in the membrane electrode assembly of the fuel cell assembly have been described. The fuel-cell assemblies and their membrane electrode assemblies contain cathode catalyst materials having catalytic surfaces that are functionalized with cyano groups to improve catalyst activity. The cathode catalyst materials may include a catalytic metal such as platinum or a platinum alloy. The cyano groups may be derived from a cyanide source that is electro-oxidized onto the catalytic surfaces. Nonlimiting examples of cyanide sources include amino acids such as glycine, alanine, and serine.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 3, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Jingxin Zhang, Rohit Makharia, Jeanette E. Owejan
  • Patent number: 8430985
    Abstract: One embodiment includes a process including coating a first microporous layer onto a first decal and curing the first microporous layer and the first decal.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: April 30, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Jeanette E. Owejan, Hubert A. Gasteiger
  • Patent number: 8409769
    Abstract: A gas diffusion layer for a fuel cell is described. The gas diffusion layer includes a carbon fiber mat having a substantially open structure. Bloomed fibrillated acrylic pulp is added into a microporous layer ink. Alternatively, the bloomed fibrillated acrylic pulp can first be disposed on the carbon fiber mat, with the microporous layer ink added thereafter. When the microporous layer ink/bloomed fibrillated acrylic pulp mixture is coated on the carbon fiber mat, the ink penetrates through the open substrate, and is locked into place by the bloomed acrylic pulp fibers. This allows for a buildup of microporous layer ink on top of the substrate for added thickness when the bloomed fibrillated acrylic pulp sits on top of the mat.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 2, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunxin Ji, Jeanette E. Owejan
  • Patent number: 8252712
    Abstract: An ink composition for forming a fuel cell electrode includes a catalyst composition, a polymeric binder, a polymeric dispersant, and a solvent. The polymeric dispersant includes a perfluorocyclobutyl-containing polymer.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 28, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Roland J. Koestner, Sean M Mackinnon, Timothy J. Fuller, Jeanette E. Owejan
  • Publication number: 20120178010
    Abstract: The present invention provides a fuel cell having a membrane electrode assembly disposed between a first diffusion media that has a first set of material characteristics and a second diffusion media that has a second set of material characteristics. The membrane electrode assembly and the first and second diffusion media provide a cell assembly. The cell assembly provides a water transport mechanism that selectively controls water transportation across a thickness of the first and second diffusion media and through the membrane electrode assembly. The first set of material characteristics has at least one material characteristic substantially different from at least one material characteristic of the second set of material characteristics. The selection of the first and second set of material characteristics defines the water transport mechanism for managing hydration of the first and the second diffusion media.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Inventors: CHUNXIN JI, STEVEN R. FALTA, JEANETTE E. OWEJAN
  • Patent number: 8206871
    Abstract: A fuel cell assembly is disclosed, the fuel cell assembly including a pair of terminal plates, one terminal plate disposed at each end of the fuel cell assembly, a fuel cell disposed between a pair of end fuel cells and the terminal plates, and a thermally insulating, electrically conductive layer formed between the fuel cell and one of the terminal plates adapted to mitigate thermal losses from the end plate, and fluid condensation and ice formation in an end fuel cell. The end fuel cells of the fuel cell assembly have a membrane and/or a cathode having a thickness greater than an average thickness of a membrane and/or a cathode disposed in the fuel cell that may be used in conjunction with, or instead of, the insulating layer to further mitigate thermal losses from the end plate, and fluid condensation and ice formation in the end fuel cells.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 26, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric J. Connor, Daniel P. Miller, Wenbin Gu, Jeanette E. Owejan, Mark Mathias
  • Publication number: 20120064434
    Abstract: A substantially crack-free electrode layer is described. The substantially crack-free electrode layer includes a substrate; and a substantially crack-free electrode layer on the substrate, the electrode layer comprising a catalyst, an ionomer, and a layered silicate reinforcement. Methods of making the electrode layer, electrode ink compositions, and membrane electrode assemblies incorporating the electrode layer are also described.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Bradley M. Houghtaling, Jeanette E. Owejan
  • Publication number: 20110117472
    Abstract: An ink composition for forming a fuel cell electrode includes a catalyst composition, a polymeric binder, a polymeric dispersant, and a solvent. The polymeric dispersant includes a perfluorocyclobutyl-containing polymer.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Roland J. Koestner, Sean M Mackinnon, Timothy J. Fuller, Jeanette E. Owejan
  • Publication number: 20110039192
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 17, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20110008702
    Abstract: A fuel cell assembly is disclosed, the fuel cell assembly including a pair of terminal plates, one terminal plate disposed at each end of the fuel cell assembly, a fuel cell disposed between a pair of end fuel cells and the terminal plates, and a thermally insulating, electrically conductive layer formed between the fuel cell and one of the terminal plates adapted to mitigate thermal losses from the end plate, and fluid condensation and ice formation in an end fuel cell. The end fuel cells of the fuel cell assembly have a membrane and/or a cathode having a thickness greater than an average thickness of a membrane and/or a cathode disposed in the fuel cell that may be used in conjunction with, or instead of, the insulating layer to further mitigate thermal losses from the end plate, and fluid condensation and ice formation in the end fuel cells.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 13, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric J. Connor, Daniel P. Miller, Wenbin Gu, Jeanette E. Owejan, Mark Mathias
  • Patent number: 7858266
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: December 28, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20100178582
    Abstract: A fuel cell includes a first electrode and a second electrode with an ion conducting polymer membrane positioned between these electrodes. The fuel cell further comprises a first OER catalyst-containing ionic layer positioned between the first electrode and the ion conducting polymer membrane. The first OER catalyst-containing layer includes an OER catalyst-containing compound, an ion conducting polymer and carbon. Characteristically, the weight ratio of ion conducting polymer to carbon is from about 10 to about 100. A method for forming the fuel cell is also provided.
    Type: Application
    Filed: January 12, 2009
    Publication date: July 15, 2010
    Applicant: GM Global Technology Operations, Inc.
    Inventors: Jingxin Zhang, Jeanette E. Owejan
  • Publication number: 20100009240
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes a plurality of electrically conductive support particles; a catalyst formed from a finely divided precious metal, the catalyst supported by the conductive support particles; an ionomer; at least one solvent; and a reinforcing material configured to bridge and distribute stresses across the electrically conductive support particles of the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 14, 2010
    Inventors: Gerald W. Fly, Yeh-Hung Lai, Chunxin Ji, Jeanette E. Owejan
  • Publication number: 20090317686
    Abstract: One exemplary embodiment may include a fuel cell comprising an electrolyte layer and an electrolyte stabilizing agent. The electrolyte stabilizing agent is disposed in an electrochemically non-active layer and configured to migrate from the non-active layer to the electrolyte layer. Another exemplary embodiment may include a microporous layer comprising an electrolyte stabilizing agent.
    Type: Application
    Filed: June 20, 2008
    Publication date: December 24, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Todd W. Huston, Jeanette E. Owejan