Patents by Inventor Jeannette M. Garcia

Jeannette M. Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604539
    Abstract: Materials which react with (“scavenge”) sulfur compounds, such as hydrogen sulfide and mercaptans, are useful for limiting sulfur-induced corrosion. Surface-modified particles incorporating a hexahydrotriazine moiety are disclosed and used as sulfur scavengers. These surface-modified particles are used a filter media in fixed filter systems and as additives to fluids including sulfur compounds. The hexahydrotriazine moiety can react with sulfur compounds in such a manner as to bind sulfur atoms to the surface-modified particles, thus allowing removal of the sulfur atoms from fluids such as crude oil, natural gas, hydrocarbon combustion exhaust gases, sulfur polluted air and water. The surface-modified particles may, in general, be sized to allow separation of the particles from the process fluid by sedimentation, size-exclusion filtration or the like.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: March 31, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20200071557
    Abstract: Extrudable compositions were prepared comprising poly(propylene) and a liquid additive comprising a lactam group. The compositions can comprise other optional additives that include a polyhemiaminal, antioxidants, UV light absorbers, and surfactants. The extruded compositions have higher percent elongation at break and lower Young's modulus compared to extruded poly(propylene) lacking the liquid additive. These and other property improvements make the extruded compositions attractive for forming field joint coatings for undersea pipeline applications.
    Type: Application
    Filed: August 31, 2018
    Publication date: March 5, 2020
    Inventors: Jeannette M. Garcia, Alireza Rahimi, Robert D. Allen, John Hobbs, Michael Firmian
  • Publication number: 20200046646
    Abstract: Materials and methods for preparing a payload-containing microcapsule with walls that have hexahydrotriazine (HT) and/or hemiaminal (HA) structures are disclosed. To an HT small molecule or a HA small molecule, or a combination thereof, in a solvent is added a cross-linking agent, NH4Cl, and a copolymer. The solution is acidified, and a payload agent is added. The HT small molecule and HA small molecule may have orthogonal functionality.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Brandon M. KOBILKA, Jason T. WERTZ, Rudy J. WOJTECKI
  • Patent number: 10556990
    Abstract: Methods of forming nanoporous materials are described herein that include forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. The method generally includes forming a reaction mixture comprising a formaldehyde, a solvent, a primary aromatic diamine, and a diamine having a primary amino group and a secondary amino group, the secondary amino group having a base-reactive substituent, and heating the reaction mixture to a temperature of between about 50 degC. and about 150 degC. to form a polymer. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 10557008
    Abstract: A porous material includes a resin material based on a trifunctional ethynyl monomer. Pores in the porous material can be of various sizes including nanoscale sizes. The porous material may be used in a variety of applications, such as those requiring materials with a high strength-to-weight ratio. The porous material can include a filler material dispersed therein. The filler material can be, for example, a particle, a fiber, a fabric, or the like. In some examples, the filler material can be a carbon fiber or a carbon nanotube. A method of making a porous material includes forming a resin including a trifunctional ethynyl monomer component and a polythioaminal component. The resin can be heated to promote segregation of the components into different phases with predominately one or the other component in each phase. Processing of the resin after phase segregation to decompose the polythioaminal component can form pores in the resin.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20200023069
    Abstract: Embodiments of the invention are directed to a macromolecular chemotherapeutic. A non-limiting example of the macromolecular chemotherapeutic includes a block copolymer. The block copolymer can include a water-soluble block, a cationic block, and a linker, wherein the linker is connected to the water-soluble bock and the charged block.
    Type: Application
    Filed: September 20, 2019
    Publication date: January 23, 2020
    Inventors: Dylan Boday, Wei Cheng, Jeannette M. Garcia, James Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Chuan Yang, YiYan Yang
  • Publication number: 20200011797
    Abstract: A system is provided for performing metal trace analysis on a liquid sample. A sample holder holds an analysis substrate that includes a reference region and at least one test region. An ultraviolet (UV) light source emits ultraviolet light illuminating the liquid sample. An optical sensor detects radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. A microcontroller processes the electrical signal. An external interface transmits the processed electrical signal to an external device. The analysis substrate is configured for manual movement by a user. A tracking system detects a sample scanning location for the metal trace analysis, and includes a light source, other than the UV light source, and another optical sensor. The other optical sensor detects light emitted by the light source.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 9, 2020
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Patent number: 10525442
    Abstract: Method and apparatus for controlling metals in a liquid are described. The liquid is contacted with a hexahydrotriazine and/or a hemiaminal material, and metal is adsorbed from the liquid onto the material. The hexahydrotriazine and/or hemiaminal material may be made from a diamine and an aldehyde.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki, Gavin O. Jones
  • Patent number: 10485875
    Abstract: A functionalized nanomaterial, such as a nanoparticle, can include a polythioaminal functionalized surface. The polythioaminal linked to the surface of the nanomaterial can be bonded to a compound such as therapeutic and/or diagnostic materials. The thiol-based linkages can be used to bond the polythioaminal to both the nanomaterial and the therapeutic and/or diagnostic materials. Polythioaminals can be prepared via reactions of triazine and dithiols. Polythioaminals thus prepared can be further modified to provide linkages to the nanomaterial and other compounds such as medicinal compound, peptides, and dyes. Nanomaterials including such compounds linked thereto via the polythioaminal can be supplied for therapeutic and/or diagnostic purposes to biological target regions.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: November 26, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Patent number: 10463746
    Abstract: Embodiments of the invention are directed to a macromolecular chemotherapeutic. A non-limiting example of the macromolecular chemotherapeutic includes a block copolymer. The block copolymer can include a water-soluble block, a cationic block, and a linker, wherein the linker is connected to the water-soluble bock and the charged block.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 5, 2019
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Dylan Boday, Wei Cheng, Jeannette M. Garcia, James Hedrick, Nathaniel H. Park, Rudy J. Wojtecki, Chuan Yang, YiYan Yang
  • Patent number: 10457772
    Abstract: The present disclosure relates to polythioaminals with applications as carriers or delivery vehicles for therapeutic agents or other small molecule cargo. Polythioaminal block copolymer coupled to a therapeutic agent is a polymer-therapeutic conjugate that exhibits higher stability and longer life time in aqueous environments. The polythioaminal block copolymer coupled to a therapeutic agent can be synthesized by reacting hexahydrotriazines with a hydrophobic block precursor, a hydrophilic block precursor, a particle stabilizing segment precursor, and a cargo, such as a therapeutic agent, in a one pot synthesis. The ease of synthesizing the resulting polythioaminal block copolymer coupled to the therapeutic agent while offering the extended stability and polymer life time in aqueous environments make the polythioaminal block copolymer particularly attractive for therapeutic carriers.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 29, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Willy Chin, Jeannette M. Garcia, James L. Hedrick, Eunice Leong Jiayu, Shrinivas Venkataraman, Zhi Xiang Voo, Rudy J. Wojtecki, Yi Yan Yang
  • Patent number: 10429303
    Abstract: A portable optical measurement system is provided for performing metal trace analysis on a liquid sample. The system includes a sample holder for holding an analysis substrate that includes the liquid sample during the metal trace analysis. The system further includes an ultraviolet (UV) light source for emitting ultraviolet light illuminating the liquid sample. The system also includes an optical sensor for detecting radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. The system additionally includes a microcontroller for processing the electrical signal. The system further includes an external interface for transmitting the processed electrical signal to an external device.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Patent number: 10364326
    Abstract: Methods of forming nanoporous materials are described herein that include forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. The method generally includes forming a reaction mixture comprising a formaldehyde, a solvent, a primary aromatic diamine, and a diamine having a primary amino group and a secondary amino group, the secondary amino group having a base-reactive substituent, and heating the reaction mixture to a temperature of between about 50 deg C. and about 150 deg C. to form a polymer. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: July 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki
  • Publication number: 20190218342
    Abstract: This disclosure describes new compositions and methods related to photoresponsive poly(hexahydrotriazines) and related polymers. In an embodiment, a method of patterning a substrate includes forming a liquid poly(hemiaminal) material by a process that includes forming a reaction mixture comprising a polar solvent, paraformaldehyde, and an aminobenzene compound having photoreactive groups, and heating the reaction mixture at a temperature up to 50° C. The method further includes applying the liquid poly(hemiaminal) material to a substrate; patterning the liquid poly(hemiaminal) material with UV light; and curing the liquid poly(hemiaminal) material to form a cured poly(hexahydrotriazine) polymer.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Jason T. Wertz, Rudy J. Wojtecki
  • Publication number: 20190211152
    Abstract: In an embodiment, a polymeric material includes a plurality of hemiaminal units bonded together by a first linkage and a second linkage, wherein the first linkage is thermally stable and resistant to bases and the second linkage is thermally degradable and degradable by a base. In another embodiment, a method of forming nanoporous materials includes forming a polymer network with a chemically removable portion. The chemically removable portion may be polycarbonate polymer that is removable on application of heat or exposure to a base, or a polyhexahydrotriazine (PHT) or polyhemiaminal (PHA) polymer that is removable on exposure to an acid. Removing any portion of the polymer results in formation of nanoscopic pores as polymer chains are decomposed, leaving pores in the polymer matrix.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Dylan J. BODAY, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI
  • Patent number: 10336897
    Abstract: Methods, compounds, and compositions described herein generally relate to hemiaminal organogel networks (HDCNs) and methods of forming HDCNs. In some embodiments, a hemiaminal organogel has a plurality of first polymers, each having a first end and a second end, a plurality of second polymers, each having a first end and a second end, and a plurality of trivalent aminal-hemiaminal linkages. The first end of each polymer of the plurality of first polymers may be covalently bonded to a first trivalent aminal-hemiaminal linkage. The second end of each polymer of the plurality of first polymers may be covalently bonded to a second trivalent aminal-hemiaminal linkage. The first end of each polymer of the plurality of second polymers may be covalently bonded to one of the plurality of trivalent aminal-hemiaminal linkages. The second end of each polymer of the plurality of second polymers may be non-covalently bonded.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Mareva B. Fevre, Jeannette M. Garcia, James L. Hedrick, Rudy J. Wojtecki, Mu San Zhang
  • Patent number: 10336914
    Abstract: Methods and compositions related to chemically active hexahydrotriazine inorganic-organic hybrid coatings are described. The coatings have affinity for sulfur compounds, and thus may bind or capture sulfur containing contaminants and gases. The coatings have organosilicon containing functional groups and segments, and may also contain silica particles, which cumulatively enhances adhesion, abrasion resistance and further provides steric barriers to gaseous diffusion. The coatings have utility as protective barrier coatings in the field of electronics.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: July 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Jason T. Wertz, Rudy J. Wojtecki
  • Patent number: 10329380
    Abstract: A composition, comprising a poly(methylene lactide) polymer covalently linked to a hexahydrotriazine unit or a hemiaminal unit, and methods of making such a composition, are described herein. In one embodiment, the poly(methylene lactide) polymer comprises a plurality of poly(methylene lactide) chains, and at least a portion of the poly(methylene lactide) chains are cross-linked by one or more of the hexahydrotriazine units, the hemiaminal units, or a combination thereof.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Brandon M. Kobilka, Jason T. Wertz, Rudy J. Wojtecki
  • Patent number: 10328415
    Abstract: Method and apparatus for controlling metals in a liquid are described. The liquid is contacted with a hexahydrotriazine and/or a hemiaminal material, and metal is adsorbed from the liquid onto the material. The hexahydrotriazine and/or hemiaminal material may be made from a diamine and an aldehyde.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jeannette M. Garcia, James L. Hedrick, Gavin O. Jones, Rudy J. Wojtecki
  • Publication number: 20190177481
    Abstract: Polyhemiaminal (PHA) and polyhexahydrotriazine (PHT) materials are modified by 1,4 conjugate addition chemical reactions to produce a variety of molecular architectures comprising pendant groups and bridging segments. The materials are formed by a method that includes heating a mixture comprising solvent(s), paraformaldehyde, aromatic amine groups, aliphatic amine Michael donors, and Michael acceptors, such as acrylates. The reaction mixtures may be used to prepare polymer pre-impregnated materials and composites containing PHT matrix resin.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: Dylan J. BODAY, Mareva FEVRE, Jeannette M. GARCIA, James L. HEDRICK, Rudy J. WOJTECKI