Patents by Inventor Jeannette M. Wing

Jeannette M. Wing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10341857
    Abstract: A privacy preserving sensor apparatus is described herein. The privacy preserving sensor apparatus includes a microphone that is configured to output a signal that is indicative of audio in an environment. The privacy preserving sensor apparatus further includes feature extraction circuitry integrated in the apparatus with the microphone, the feature extraction circuitry configured to extract features from the signal output by the microphone that are usable to detect occurrence of an event in the environment, wherein the signal output by the microphone is unable to be reconstructed based solely upon the features.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: July 2, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Yong Rui, Daniel Morris, Andrew D. Wilson, Nikunj Raghuvanshi, Desney S. Tan, Jeannette M. Wing
  • Publication number: 20190141196
    Abstract: A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, a display device, and/or a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may provide privacy to the user. The hands-free intercom may prevent an eavesdropper from hearing the user's vocal emissions, for example, by canceling the vocal emissions at the eavesdropper's ear. The directional sound emitter may deliver out-of-phase sound to cancel the vocal emissions. The hands-free intercom may also, or instead, cancel ambient noise at the user's ear. The hands-free intercom may measure or predict a filtration of the sound to be canceled and compensate for the filtration when canceling the sound.
    Type: Application
    Filed: October 30, 2018
    Publication date: May 9, 2019
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10123140
    Abstract: Technologies pertaining to calibration of filters of an audio system are described herein. A mobile computing device is configured to compute values for respective filters, such as equalizer filters, and transmit the values to a receiver device in the audio system. The receiver device causes audio to be emitted from a speaker based upon the values for the filters.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: November 6, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Desney S. Tan, Daniel Morris, Andrew D. Wilson, Yong Rui, Nikunj Raghuvanshi, Jeannette M. Wing
  • Patent number: 10116804
    Abstract: A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, a display device, and/or a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may provide privacy to the user. The hands-free intercom may prevent an eavesdropper from hearing the user's vocal emissions, for example, by canceling the vocal emissions at the eavesdropper's ear. The directional sound emitter may deliver out-of-phase sound to cancel the vocal emissions. The hands-free intercom may also, or instead, cancel ambient noise at the user's ear. The hands-free intercom may measure or predict a filtration of the sound to be canceled and compensate for the filtration when canceling the sound.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: October 30, 2018
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10057764
    Abstract: A privacy preserving sensor apparatus is described herein. The privacy preserving sensor apparatus includes a microphone that is configured to output a signal that is indicative of audio in an environment. The privacy preserving sensor apparatus further includes feature extraction circuitry integrated in the apparatus with the microphone, the feature extraction circuitry configured to extract features from the signal output by the microphone that are usable to detect occurrence of an event in the environment, wherein the signal output by the microphone is unable to be reconstructed based solely upon the features.
    Type: Grant
    Filed: January 18, 2014
    Date of Patent: August 21, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yong Rui, Daniel Morris, Andrew D. Wilson, Nikunj Raghuvanshi, Desney S. Tan, Jeannette M. Wing
  • Publication number: 20180220297
    Abstract: A privacy preserving sensor apparatus is described herein. The privacy preserving sensor apparatus includes a microphone that is configured to output a signal that is indicative of audio in an environment. The privacy preserving sensor apparatus further includes feature extraction circuitry integrated in the apparatus with the microphone, the feature extraction circuitry configured to extract features from the signal output by the microphone that are usable to detect occurrence of an event in the environment, wherein the signal output by the microphone is unable to be reconstructed based solely upon the features.
    Type: Application
    Filed: January 24, 2018
    Publication date: August 2, 2018
    Inventors: Yong Rui, Daniel Morris, Andrew D. Wilson, Nikunj Raghuvanshi, Desney S. Tan, Jeannette M. Wing
  • Patent number: 9995823
    Abstract: The present disclosure provides systems and methods for using compressed sensing for imaging an object for use in combination with an entertainment or infotainment device. For example, the system may utilize a few—(e.g., 1, 2, 3 . . . ) pixel imaging sensor to obtain coarse image data from each of a plurality of subregions of a region of interest. Compressed sensing techniques may then be used to estimate a higher resolution image of the region of interest using the coarse image data from the plurality of subregions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: June 12, 2018
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170372697
    Abstract: A sound processing system includes a sound input device for providing a sound input, a sound output device for providing a sound output, and processing electronics including a processor and a memory, wherein the processing electronics is configured to receive a target sound input identifying a target sound, receive a rule input establishing a sound processing rule that references the target sound, receive a sound input from the sound input device, analyze the sound input for the target sound, process the sound input according to the sound processing rule in view of the analysis of the sound input, and provide a processed sound output to the sound output device.
    Type: Application
    Filed: June 22, 2016
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood,, JR., Victoria Y.H. Wood
  • Publication number: 20170371038
    Abstract: The present disclosure provides systems and methods associated with determining velocity and/or acceleration information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may detect a Doppler shift of reflected ultrasound to determine an acceleration and/or velocity associated with an object. The velocity and/or acceleration information may be utilized to modify the state of a gaming system, entertainment system, infotainment system, and/or other device. The velocity and/or acceleration date may be used in combination with a mapping or positioning system that generates positional data associated with the objects.
    Type: Application
    Filed: August 21, 2017
    Publication date: December 28, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Victoria Y.H. Wood
  • Patent number: 9779593
    Abstract: A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, a display device, and/or a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may induce the user to move to a desired location and/or to stay within a connectivity area. The hands-free intercom may also or instead induce the user to face in a desired orientation. The directional sound emitter and/or the display device may induce the user by explicitly indicating the desired location, by adjusting an apparent source of the audio or video, by changing quality of delivered audio or video based on user position, by producing irritating audio or video, and/or the like.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: October 3, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9739883
    Abstract: The present disclosure provides systems and methods associated with determining velocity and/or acceleration information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may detect a Doppler shift of reflected ultrasound to determine an acceleration and/or velocity associated with an object. The velocity and/or acceleration information may be utilized to modify the state of a gaming system, entertainment system, infotainment system, and/or other device. The velocity and/or acceleration date may be used in combination with a mapping or positioning system that generates positional data associated with the objects.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: August 22, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 9729984
    Abstract: Technologies pertaining to calibration of filters of an audio system are described herein. A mobile computing device is configured to compute values for respective filters, such as equalizer filters, and transmit the values to a receiver device in the audio system. The receiver device causes audio to be emitted from a speaker based upon the values for the filters.
    Type: Grant
    Filed: January 18, 2014
    Date of Patent: August 8, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Desney S. Tan, Daniel Morris, Andrew D. Wilson, Yong Rui, Nikunj Raghuvanshi, Jeannette M. Wing
  • Patent number: 9618618
    Abstract: The present disclosure provides systems and methods associated with determining position and/or movement information using ultrasound. A system may include one or more ultrasonic transmitters and/or receivers. An ultrasonic transmitter may be configured to transmit ultrasound into a region bounded by one or more surfaces. The ultrasonic receiver may receive direct ultrasonic reflections and/or rebounded ultrasonic reflections from one or more objects within the region. A mapping or positioning system may generate positional data associated with one or more of the object(s) based on the direct ultrasonic reflection(s) and/or the rebounded ultrasonic reflection(s). The mapping or positioning system may generate enhanced positional data by combining the direct positional data and the rebounded positional data.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 11, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170055075
    Abstract: Technologies pertaining to calibration of filters of an audio system are described herein. A mobile computing device is configured to compute values for respective filters, such as equalizer filters, and transmit the values to a receiver device in the audio system. The receiver device causes audio to be emitted from a speaker based upon the values for the filters.
    Type: Application
    Filed: November 7, 2016
    Publication date: February 23, 2017
    Inventors: Desney S. Tan, Daniel Morris, Andrew D. Wilson, Yong Rui, Nikunj Raghuvanshi, Jeannette M. Wing
  • Patent number: 9565284
    Abstract: A hands-free intercom may include a user-tracking sensor, a directional microphone, a directional sound emitter, and a communication interface. The user-tracking sensor may determine a location of a user so the directional microphone can measure vocal emissions by the user and the directional sound emitter can deliver audio to the user. The hands-free intercom may determine whether the user is communicatively coupled via a mobile device to a remote entity. The hands-free intercom may be configured to receive a handoff of the communicative coupling, for example, by acting as a peripheral of the mobile device, by requesting the handoff, and/or the like. The hands-free intercom may be configured to deliver communications from the user to an appliance and vice versa. The hands-free intercom may manage access rights of the various entities to prevent unauthorized communications.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 7, 2017
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20170031021
    Abstract: The present disclosure provides systems and methods for using compressed sensing for imaging an object for use in combination with an entertainment or infotainment device. For example, the system may utilize a few—(e.g., 1, 2, 3 . . . ) pixel imaging sensor to obtain coarse image data from each of a plurality of subregions of a region of interest. Compressed sensing techniques may then be used to estimate a higher resolution image of the region of interest using the coarse image data from the plurality of subregions.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9560445
    Abstract: Technologies pertaining to provision of customized audio to each listener in a plurality of listeners are described herein. A sensor outputs data that is indicative of locations of multiple listeners in an environment. The data is processed to determine locations and orientations of the respective heads of the multiple listener in the environment. Based on the locations and orientations of heads of the listeners in the environment, for each listener, respective customized audio signals are generated. The customized audio signals are transmitted to respective beamforming transducers. The beamforming transducers directionally output customized beams for the first listener and the second listener based upon the customized audio signals and locations of the heads of the listeners.
    Type: Grant
    Filed: January 18, 2014
    Date of Patent: January 31, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Nikunj Raghuvanshi, Daniel Morris, Andrew D. Wilson, Yong Rui, Desney S. Tan, Jeannette M. Wing
  • Publication number: 20170011521
    Abstract: The present disclosure provides systems and methods for using two imaging modalities for imaging an object at two different resolutions. For example, the system may utilize a first modality (e.g., ultrasound or electromagnetic radiation) to generate image data at a first resolution. The system may then utilize the other modality to generate image data of portions of interest at a second resolution that is higher than the first resolution. In another embodiment, one imaging modality may be used to resolve an ambiguity, such as ghost images, in image data generated using another imaging modality.
    Type: Application
    Filed: September 6, 2016
    Publication date: January 12, 2017
    Inventors: Jesse R. Cheatham, III, Roderick A Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20160364960
    Abstract: The present disclosure provides systems and methods for generating a haptic sensation, such as a tactile stimuli, using parametric ultrasound on a site of an object. An entertainment device may be associated with a parametric ultrasonic transmitters subsystem configured to transmit first and second ultrasonic pulses that intersect proximate a site of a user and generate an acoustic wave at a beat frequency of the first and second ultrasonic pulses. The beat frequency may be selected such that the generated acoustic wave induces a haptic sensation at the identified site of the user.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 9437002
    Abstract: The present disclosure provides systems and methods for using two imaging modalities for imaging an object at two different resolutions. For example, the system may utilize a first modality (e.g., ultrasound or electromagnetic radiation) to generate image data at a first resolution. The system may then utilize the other modality to generate image data of portions of interest at a second resolution that is higher than the first resolution. In another embodiment, one imaging modality may be used to resolve an ambiguity, such as ghost images, in image data generated using another imaging modality.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 6, 2016
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Eric D. Rudder, Desney S. Tan, Clarence T. Tegreene, Charles Whitmer, Andrew Wilson, Jeannette M. Wing, Lowell L. Wood, Jr., Victoria Y. H. Wood