Patents by Inventor Jedrzej Solecki

Jedrzej Solecki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10963612
    Abstract: A scan cell comprises: a state element and selection and combination circuitry. The selection and combination circuitry comprises first combination circuitry configured to combine a signal from a scan input of the scan cell with a signal from a functional circuit input of the scan cell to generate a first signal, second combination circuitry configured to combine the signal from the functional circuit input of the scan cell with an output signal of the state element to generate a second signal, and selection circuitry configured to select an input signal for the state element from the signal from the scan input of the scan cell, the signal from the functional circuit input of the scan cell, the first signal, and the second signal based on two selection input signals of the scan cell.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: March 30, 2021
    Assignee: Mentor Graphics Corporation
    Inventors: Nilanjan Mukherjee, Jedrzej Solecki, Janusz Rajski
  • Publication number: 20200327268
    Abstract: A scan cell comprises: a state element and selection and combination circuitry. The selection and combination circuitry comprises first combination circuitry configured to combine a signal from a scan input of the scan cell with a signal from a functional circuit input of the scan cell to generate a first signal, second combination circuitry configured to combine the signal from the functional circuit input of the scan cell with an output signal of the state element to generate a second signal, and selection circuitry configured to select an input signal for the state element from the signal from the scan input of the scan cell, the signal from the functional circuit input of the scan cell, the first signal, and the second signal based on two selection input signals of the scan cell.
    Type: Application
    Filed: April 10, 2020
    Publication date: October 15, 2020
    Inventors: Nilanjan Mukherjee, Jedrzej Solecki, Janusz Rajski
  • Patent number: 10509072
    Abstract: Various aspects of the disclosed technology relate to using capture-per-cycle test points to reduce test application time. A scan-based testing system includes a plurality of regular scan chains and one or more capture-per-cycle scan chains on which scan cells capture and compact test responses at predetermined observation points per shift clock cycle.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 17, 2019
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Sylwester Milewski, Nilanjan Mukherjee, Jedrzej Solecki, Jerzy Tyszer, Justyna Zawada
  • Patent number: 10379161
    Abstract: Various aspects of the present invention relate to scan chain stitching techniques for test-per-clock. With various implementations of the invention, a plurality of scan cell partitions are generated based on combinational paths between scan cells. Scan cells may be assigned to one or more pairs of scan cell partitions based on combinational paths between the scan cells. Each pair of the scan cell partitions comprises one stimuli partition and one compacting partition. Using the plurality of scan cell partitions generated, scan chains are formed based on at least information of combinational paths between scan cell partitions in the plurality of scan cell partitions. The formed scan chains are to be dynamically divided into three groups during a test, which are configured to operate in a shifting-launching mode, a capturing-compacting-shifting mode and a mission mode, respectively.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: August 13, 2019
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20180252768
    Abstract: Various aspects of the disclosed technology relate to using capture-per-cycle test points to reduce test application time. A scan-based testing system includes a plurality of regular scan chains and one or more capture-per-cycle scan chains on which scan cells capture and compact test responses at predetermined observation points per shift clock cycle.
    Type: Application
    Filed: January 30, 2018
    Publication date: September 6, 2018
    Inventors: Janusz Rajski, Sylwester Milewski, Nilanjan Mukherjee, Jedrzej Solecki, Jerzy Tyszer, Justyna Zawada
  • Patent number: 9933485
    Abstract: Various aspects of the disclosed technology relate to deterministic built-in self-test. A deterministic built-in self-test system comprises: a decompressor configured at least to decompress one of compressed test patterns stored on chip for a predetermined number of times; and a controller configured at least to output a control signal that inverts outputs of the decompressor at one or more scan shift clock cycles based on control data stored on chip, enabling the system to output the predetermined number of test patterns based on the one of compressed test patterns, wherein the one or more scan shift clock cycles are different for each of the predetermined number of test patterns.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 3, 2018
    Assignee: Mentor Graphics Corporation
    Inventors: Grzegorz Mrugalski, Janusz Rajski, Lukasz Rybak, Jedrzej Solecki, Jerzy Tyszer
  • Patent number: 9714981
    Abstract: Aspects of the invention relate to a test-per-clock scheme based on dynamically-partitioned reconfigurable scan chains. Every clock cycle, scan chains configured by a control signal to operate in a shifting-launching mode shift in test stimuli one bit and immediately applies the newly formed test pattern to the circuit-under-test; and scan chains configured by the control signal to operate in a capturing-compacting-shifting mode shift out one bit of previously compacted test response data while compacting remaining bits of the previously compacted test response data with a currently-captured test response to form currently compacted test response data. A large number of scan chains may be configured by the control signal to work in a mission mode. After a predetermined number of clock cycles, a different control signal may be applied to reconfigure and partition the scan chains for applying different test stimuli.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: July 25, 2017
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20160252573
    Abstract: Aspects of the invention relate to a test-per-clock scheme based on dynamically-partitioned reconfigurable scan chains. Every clock cycle, scan chains configured by a control signal to operate in a shifting-launching mode shift in test stimuli one bit and immediately applies the newly formed test pattern to the circuit-under-test; and scan chains configured by the control signal to operate in a capturing-compacting-shifting mode shift out one bit of previously compacted test response data while compacting remaining bits of the previously compacted test response data with a currently-captured test response to form currently compacted test response data. A large number of scan chains may be configured by the control signal to work in a mission mode. After a predetermined number of clock cycles, a different control signal may be applied to reconfigure and partition the scan chains for applying different test stimuli.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20160245863
    Abstract: Various aspects of the disclosed technology relate to deterministic built-in self-test. A deterministic built-in self-test system comprises: a decompressor configured at least to decompress one of compressed test patterns stored on chip for a predetermined number of times; and a controller configured at least to output a control signal that inverts outputs of the decompressor at one or more scan shift clock cycles based on control data stored on chip, enabling the system to output the predetermined number of test patterns based on the one of compressed test patterns, wherein the one or more scan shift clock cycles are different for each of the predetermined number of test patterns.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 25, 2016
    Inventors: Grzegorz Mrugalski, Janusz Rajski, Lukasz Rybak, Jedrzej Solecki, Jerzy Tyszer
  • Patent number: 9347993
    Abstract: Aspects of the invention relate to test generation techniques for test-per-clock. Test cubes may be generated by adding constraints to a conventional automatic test pattern generator. During a test cube merging process, a first test cube is merged with one or more test cubes that are compatible with the first test cube to generate a second test cube. The second test cube is shifted by one bit along a direction of scan chain shifting to generate a third test cube. The third test cube is then merged with one or more test cubes in the test cubes that are compatible with the third test cube to generate a fourth test cube. The shifting and merging operations may be repeated for a predetermined number of times.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 24, 2016
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Patent number: 9335377
    Abstract: Aspects of the invention relate to a test-per-clock scheme based on dynamically-partitioned reconfigurable scan chains. Every clock cycle, scan chains configured by a control signal to operate in a shifting-launching mode shift in test stimuli one bit and immediately applies the newly formed test pattern to the circuit-under-test; and scan chains configured by the control signal to operate in a capturing-compacting-shifting mode shift out one bit of previously compacted test response data while compacting remaining bits of the previously compacted test response data with a currently-captured test response to form currently compacted test response data. A large number of scan chains may be configured by the control signal to work in a mission mode. After a predetermined number of clock cycles, a different control signal may be applied to reconfigure and partition the scan chains for applying different test stimuli.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 10, 2016
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Patent number: 9009553
    Abstract: Aspects of the invention relate to generating scan chain configurations for test-per-clock based on circuit topology. With various implementations of the invention, weight vectors between scan chains in a circuit are first determined. Based on the weight vectors, a scan chain configuration is generated by assigning some scan chains in the scan chains to a stimuli group and some other scan chains in the scan chains to a compacting group. Here, the stimuli group comprises scan chains to operate in a shifting-launching mode, and the compacting group comprises scan chains to operate in a capturing-compacting-shifting mode.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Patent number: 9003248
    Abstract: Aspects of the invention relate to using fault-driven techniques to generate scan chain configurations for test-per-clock. A plurality of test cubes that detect a plurality of faults are first generated. Scan chains for loading specified bits of the test cubes are then assigned to a stimuli group. From the plurality of test cubes, a test cube that detects a large number of faults that do not propagate exclusively to scan chains in the stimuli group is selected. One or more scan chains that are not in the stimuli group and are needed for observing the large number of faults are assigned to a compacting group. The number of scan chains either in the compacting group or in both of the compacting group and the stimuli group may be limited to a predetermined number.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: April 7, 2015
    Assignee: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20140372821
    Abstract: Various aspects of the present invention relate to scan chain stitching techniques for test-per-clock. With various implementations of the invention, a plurality of scan cell partitions are generated based on combinational paths between scan cells. Scan cells may be assigned to one or more pairs of scan cell partitions based on combinational paths between the scan cells. Each pair of the scan cell partitions comprises one stimuli partition and one compacting partition. Using the plurality of scan cell partitions generated, scan chains are formed based on at least information of combinational paths between scan cell partitions in the plurality of scan cell partitions. The formed scan chains are to be dynamically divided into three groups during a test, which are configured to operate in a shifting-launching mode, a capturing-compacting-shifting mode and a mission mode, respectively.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20140372819
    Abstract: Aspects of the invention relate to generating scan chain configurations for test-per-clock based on circuit topology. With various implementations of the invention, weight vectors between scan chains in a circuit are first determined. Based on the weight vectors, a scan chain configuration is generated by assigning some scan chains in the scan chains to a stimuli group and some other scan chains in the scan chains to a compacting group. Here, the stimuli group comprises scan chains to operate in a shifting-launching mode, and the compacting group comprises scan chains to operate in a capturing-compacting-shifting mode.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20140372820
    Abstract: Aspects of the invention relate to using fault-driven techniques to generate scan chain configurations for test-per-clock. A plurality of test cubes that detect a plurality of faults are first generated. Scan chains for loading specified bits of the test cubes are then assigned to a stimuli group. From the plurality of test cubes, a test cube that detects a large number of faults that do not propagate exclusively to scan chains in the stimuli group is selected. One or more scan chains that are not in the stimuli group and are needed for observing the large number of faults are assigned to a compacting group. The number of scan chains either in the compacting group or in both of the compacting group and the stimuli group may be limited to a predetermined number.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20140372818
    Abstract: Aspects of the invention relate to a test-per-clock scheme based on dynamically-partitioned reconfigurable scan chains. Every clock cycle, scan chains configured by a control signal to operate in a shifting-launching mode shift in test stimuli one bit and immediately applies the newly formed test pattern to the circuit-under-test; and scan chains configured by the control signal to operate in a capturing-compacting-shifting mode shift out one bit of previously compacted test response data while compacting remaining bits of the previously compacted test response data with a currently-captured test response to form currently compacted test response data. A large number of scan chains may be configured by the control signal to work in a mission mode. After a predetermined number of clock cycles, a different control signal may be applied to reconfigure and partition the scan chains for applying different test stimuli.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski
  • Publication number: 20140372824
    Abstract: Aspects of the invention relate to test generation techniques for test-per-clock. Test cubes may be generated by adding constraints to a conventional automatic test pattern generator. During a test cube merging process, a first test cube is merged with one or more test cubes that are compatible with the first test cube to generate a second test cube. The second test cube is shifted by one bit along a direction of scan chain shifting to generate a third test cube. The third test cube is then merged with one or more test cubes in the test cubes that are compatible with the third test cube to generate a fourth test cube. The shifting and merging operations may be repeated for a predetermined number of times.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Applicant: Mentor Graphics Corporation
    Inventors: Janusz Rajski, Jedrzej Solecki, Jerzy Tyszer, Grzegorz Mrugalski