Patents by Inventor Jeff D. Cammerata

Jeff D. Cammerata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10725124
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: July 28, 2020
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
  • Patent number: 10120039
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a magnetic field generator that generates a magnetic field that is applied to the NV diamond material, a radio frequency (RF) excitation source that provides RF excitation to the NV diamond material, an optical excitation source that provides optical excitation to the NV diamond material, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller is configured to compute a total incident magnetic field at the NV diamond material based on the optical signal emitted by the NV diamond material, and drive the magnetic field generator to generate a compensatory magnetic field, the generated compensatory magnetic field being set to offset a shift in the optical signal emitted by the NV diamond material caused by an external magnetic field.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: John B. Stetson, Jr., Jeff D. Cammerata
  • Publication number: 20180196111
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Inventors: Brian P. BOESCH, Gregory Scott BRUCE, Jeff D. CAMMERATA, David Nelson COAR, Laird Nicholas EGAN, Bryan Neal FISK, Wilbur LEW, Arul MANICKAM, Stephen Michael SEKELSKY, John B. STETSON, JR., Peter G. KAUP, Julie Lynne MILLER, Jon C. RUSSO, Emanuel Solomon STOCKMAN, Thomas J. MEYER, James Michael KRAUSE, James P. MABRY, Elton PEPA
  • Patent number: 9910104
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: March 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman
  • Patent number: 9910105
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: March 6, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Brian P. Boesch, Gregory Scott Bruce, Jeff D. Cammerata, David Nelson Coar, Laird Nicholas Egan, Bryan Neal Fisk, Wilbur Lew, Arul Manickam, Stephen Michael Sekelsky, John B. Stetson, Jr., Peter G. Kaup, Julie Lynne Miller, Jon C. Russo, Emanuel Solomon Stockman, Thomas J. Meyer, James Michael Krause, James P. Mabry, Elton Pepa
  • Patent number: 9835694
    Abstract: Methods and configuration are disclosed for providing higher magnetic sensitivity magnetometers through fluorescence manipulation by phonon spectrum control. A method for increasing the magnetic sensitivity for a DNV sensor may include providing a diamond having nitrogen vacancies of a DNV sensor and an acoustic driver and acoustically driving the diamond with the acoustic driver to manipulate a phonon spectrum of the DNV sensor. A DNV sensor may include a diamond having nitrogen vacancies, a photo detector configured to detect photon emissions from the diamond responsive to laser excitation of the diamond and an acoustic driver configured to manipulate a phonon spectrum for the DNV sensor by acoustically driving the diamond.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: December 5, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: David N. Coar, Jeff D. Cammerata
  • Patent number: 9835693
    Abstract: Methods and configuration are disclosed for providing higher magnetic sensitivity magnetometers through fluorescence manipulation by phonon spectrum control. A method for increasing the magnetic sensitivity for a DNV sensor may include providing a diamond having nitrogen vacancies of a DNV sensor and an acoustic driver and acoustically driving the diamond with the acoustic driver to manipulate a phonon spectrum of the DNV sensor. A DNV sensor may include a diamond having nitrogen vacancies, a photo detector configured to detect photon emissions from the diamond responsive to laser excitation of the diamond and an acoustic driver configured to manipulate a phonon spectrum for the DNV sensor by acoustically driving the diamond.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 5, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: David N. Coar, Jeff D. Cammerata
  • Patent number: 9829545
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: November 28, 2017
    Assignee: Lockheed Martin Corporation
    Inventors: John B. Stetson, Jr., Jeff D. Cammerata
  • Publication number: 20170212046
    Abstract: A system measures the quantum energy levels of a diamond nitrogen vacancy (DNV) material to provide information regarding the quality of the material. The measurements may provide information regarding the degree of strain in the crystal lattice of the material, the concentration of crystal defect in the material, the concentration of nitrogen vacancy (NV) centers in the material, or the concentration of impurities in the material. The system may be employed to perform quality control checks on the properties of the DNV material quickly and non-destructively.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 27, 2017
    Applicant: Lockheed Martin Corporation
    Inventor: Jeff D. Cammerata
  • Publication number: 20170212184
    Abstract: Methods and configuration are disclosed for providing higher magnetic sensitivity magnetometers through fluorescence manipulation by phonon spectrum control. A method for increasing the magnetic sensitivity for a DNV sensor may include providing a diamond having nitrogen vacancies of a DNV sensor and an acoustic driver and acoustically driving the diamond with the acoustic driver to manipulate a phonon spectrum of the DNV sensor. A DNV sensor may include a diamond having nitrogen vacancies, a photo detector configured to detect photon emissions from the diamond responsive to laser excitation of the diamond and an acoustic driver configured to manipulate a phonon spectrum for the DNV sensor by acoustically driving the diamond.
    Type: Application
    Filed: July 7, 2016
    Publication date: July 27, 2017
    Applicant: Lockheed Martin Corporation
    Inventors: David N. Coar, Jeff D. Cammerata
  • Publication number: 20170212177
    Abstract: Methods and configuration are disclosed for providing higher magnetic sensitivity magnetometers through fluorescence manipulation by phonon spectrum control. A method for increasing the magnetic sensitivity for a DNV sensor may include providing a diamond having nitrogen vacancies of a DNV sensor and an acoustic driver and acoustically driving the diamond with the acoustic driver to manipulate a phonon spectrum of the DNV sensor. A DNV sensor may include a diamond having nitrogen vacancies, a photo detector configured to detect photon emissions from the diamond responsive to laser excitation of the diamond and an acoustic driver configured to manipulate a phonon spectrum for the DNV sensor by acoustically driving the diamond.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 27, 2017
    Applicant: Lockheed Martin Corporation
    Inventors: David N. Coar, Jeff D. Cammerata
  • Publication number: 20170146617
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 25, 2017
    Applicant: Lockheed Martin Corporation
    Inventors: John B. STETSON, JR., Jeff D. CAMMERATA
  • Publication number: 20170146616
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a magnetic field generator that generates a magnetic field that is applied to the NV diamond material, a radio frequency (RF) excitation source that provides RF excitation to the NV diamond material, an optical excitation source that provides optical excitation to the NV diamond material, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller is configured to compute a total incident magnetic field at the NV diamond material based on the optical signal emitted by the NV diamond material, and drive the magnetic field generator to generate a compensatory magnetic field, the generated compensatory magnetic field being set to offset a shift in the optical signal emitted by the NV diamond material caused by an external magnetic field.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 25, 2017
    Applicant: Lockheed Martin Corporation
    Inventors: John B. STETSON, JR., Jeff D. CAMMERATA
  • Publication number: 20160356863
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 8, 2016
    Applicant: Lockheed Martin Corporation
    Inventors: Brian P. BOESCH, Gregory Scott BRUCE, Jeff D. CAMMERATA, David Nelson COAR, Laird Nicholas EGAN, Bryan Neal FISK, Wilbur LEW, Arul MANICKAM, Stephen Michael SEKELSKY, John B. STETSON, JR., Peter G. KAUP, Julie Lynne MILLER, Jon C. RUSSO, Emanuel Solomon STOCKMAN, Thomas J. MEYER, James Michael KRAUSE, James P. MABRY, Elton PEPA
  • Publication number: 20160216341
    Abstract: A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
    Type: Application
    Filed: January 21, 2016
    Publication date: July 28, 2016
    Applicant: Lockheed Martin Corporation
    Inventors: Brian P. BOESCH, Gregory Scott BRUCE, Jeff D. CAMMERATA, David Nelson COAR, Laird Nicholas EGAN, Bryan Neal FISK, Wilbur LEW, Arul MANICKAM, Stephen Michael SEKELSKY, John B. STETSON, JR., Peter G. KAUP, Julie Lynne MILLER, Jon C. RUSSO, Emanuel Solomon STOCKMAN
  • Patent number: 8094063
    Abstract: A method and system for enhancing a radar image provides for application of digital imaging processing techniques to a range-Doppler image produced by a radar system. The application of digital processing techniques includes a 2-D band-pass filter including a smoothing filter followed by a differentiating filter applied to the image. A constraint on concavity is placed upon the resultant 2-D band-pass filtered image to create a mask. The application of this mask to the original image results in an enhanced range-Doppler image with increased resolution.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: January 10, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Jeff D. Cammerata
  • Patent number: 8044846
    Abstract: A method for displaying information relating to the range and Doppler of a remote target includes transmitting electromagnetic energy toward the target, and receiving reflected signals defining a two-dimensional (range-Doppler) radar image. The reflected signals are matched-filtered, which tends to blur the image. The image is deblurred while the features of thermal noise enhancement and irregularity of the deconvolved output are constrained to produce a single point deblurring output.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: October 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Harry Urkowitz, Jeff D. Cammerata