Patents by Inventor Jeff Dawley

Jeff Dawley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170369364
    Abstract: Provided are methods of forming stacks comprising a substrate and one or more sol-gel layers disposed on the substrate. Also provided are stacks formed by these methods. The sol-gel layers in these stacks, especially outer layers, may have a porosity of less than 1% or even less than 0.5%. In some embodiments, these layers may have a surface roughness (Ra) of less than 1 nanometers. The sol-gel layers may be formed using radiative curing and/or thermal curing at temperatures of between 400° C. and 700° C. or higher. These temperatures allow application of sol-gel layers on new types of substrates. A sol-gel solution, used to form these layers, may have colloidal nanoparticles with a size of less than 20 Angstroms on average. This small size and narrow size distribution is believed to control the porosity of the resulting sol-gel layers.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 28, 2017
    Applicant: Advenira Enterprises, Inc.
    Inventors: Zoulfia Nagamedianova, Jeff Dawley, Elmira Ryabova, Christopher Mah
  • Patent number: 9670376
    Abstract: Provided are hybrid sol-gel coating materials and method of synthesizing such materials. Also, provided are methods of forming hybrid sol-gel coatings from such coating materials. In some embodiments, a hybrid sol-gel coating material includes a hydrolyzed inorganic component and organic component. Functional groups of the inorganic component may react with each other in a sol-gel condensation reaction, while functional groups of the organic component may be subjected to free-radical induced polymerization thereby bonding the inorganic and organic components in a resulting hybrid organic-inorganic sol-gel coating. The coating material may also comprise nanoparticles, which may be bonded to other components in a resulting coating. The inorganic component may be a silane or, more specifically, tetraethoxysilane, while the organic component may be an acrylate or, more specifically, mercapto functionalized polyester acrylate, aromatic epoxy acrylate, and/or polyurethane acrylate.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 6, 2017
    Assignee: Advenira Enterprises, Inc.
    Inventor: Jeff Dawley