Patents by Inventor Jeff Haggard

Jeff Haggard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10301750
    Abstract: The present invention relates to a continuous, multicellular, hollow carbon fiber wherein the fiber structure includes a substantially hollow fiber and multiple internal walls defining multiple integral internal hollow fibers such that the fiber structure comprises a honeycomb-like cross section.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 28, 2019
    Assignee: The Boeing Company
    Inventors: Thomas K. Tsotsis, Jeff Haggard
  • Patent number: 8337730
    Abstract: The present invention relates to a continuous, multicellular, hollow carbon fiber wherein the fiber structure includes a substantially hollow fiber and multiple internal walls defining multiple integral internal hollow fibers such that the fiber structure comprises a honeycomb-like cross section.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: December 25, 2012
    Assignees: The Boeing Company, Hill, Inc.
    Inventors: Thomas K. Tsotsis, Jeff Haggard
  • Publication number: 20100173105
    Abstract: The present invention relates to a continuous, multicellular, hollow carbon fiber wherein the fiber structure includes a substantially hollow fiber and multiple internal walls defining multiple integral internal hollow fibers such that the fiber structure comprises a honeycomb-like cross section.
    Type: Application
    Filed: January 5, 2009
    Publication date: July 8, 2010
    Applicants: THE BOEING COMPANY, HILLS, INC.
    Inventors: Thomas K. Tsotsis, Jeff Haggard
  • Patent number: 7431869
    Abstract: A nonwoven web product including ultra-fine fibers is formed utilizing a spunbond apparatus that forms multicomponent fibers by delivering first and second polymer components in a molten state from a spin pack to a spinneret, extruding multicomponent fibers including the first and second polymer components from the spinneret, attenuating the mulicomponent fibers in an aspirator, laying down the multicomponent fibers on an elongated forming surface disposed downstream from the aspirator to form a nonwoven web, and bonding portions of at least some of the fibers in the nonwoven web together to form a bonded, nonwoven web product. The multicomponent fibers can include separable segments such as islands-in-the-sea fibers, where certain separated segments become the ultra-fine fibers in the web product.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: October 7, 2008
    Assignee: Hills, Inc.
    Inventors: Jeff Haggard, Arnold Wilkie, James Brang, Jerry Taylor
  • Publication number: 20080023888
    Abstract: A method and apparatus for producing polymeric nanofibers utilizes a meltblown spinneret die having spin holes formed by grooves in plate(s) surface(s) of plate(s) where polymer exits at the plate(s) edge(s). The grooves are smaller than 0.005? wideƗ0.004? deep and have an L/D at least as large as 20:1. Flow rates of polymer through the apparatus are very low, on the order of 0.01 ghm or less. The method/apparatus produces may also be viewed as including A meltblown fabric having fibers mostly less than 0.5 microns in diameter is produced.
    Type: Application
    Filed: April 17, 2007
    Publication date: January 31, 2008
    Inventors: James Brang, Arnold Wilkie, Jeff Haggard
  • Patent number: 7252493
    Abstract: A temperature control system for use in a fiber extrusion process includes a number of metering pump assemblies including inlets to receive at least two molten polymer streams from a supply source that is connectable to the system. A pump block disposed proximate the metering pump assemblies includes a plurality of flow paths extending within the pump block, where the flow paths are aligned to receive molten polymer flowing from outlets of the metering pump assemblies and to deliver the molten polymer to a spinneret. The flow paths are arranged in flow path sets within the pump block, and each flow path set includes at least one flow path and is spaced a selected distance from the other flow path sets within the pump block so as to facilitate independent control of the temperature of a molten polymer flowing through each flow path set.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: August 7, 2007
    Assignee: Hills, Inc.
    Inventors: Brian Johnston, Jeff Haggard, Arnold Wilkie, Ruey Chern, Mark Miller, Tony Owen, John Quinlivan, Ted Mire, Brent Soucier, Kevin Moschetti
  • Publication number: 20050186299
    Abstract: A device and method for spinning polymer fibers utilizes one or more independent sources of polymer materials, pumps for feeding polymer material from each of the sources, and a series of distribution plates with surface grooves, through holes and/or slots together defining separated distribution paths, each of which receives polymer material from one of said independent sources. The surface grooves are defined to a depth less than the thickness of the distribution plate. At least one distribution plate contains spinneret orifices defined by outlet surface grooves extending from the distribution path to the edge of that plate, whereby fibers are extruded from the spinneret orifices edgewise from the plate. The spinneret orifices may be defined by overlayed outlet surface grooves or slots defined in abutting plates.
    Type: Application
    Filed: November 22, 2004
    Publication date: August 25, 2005
    Inventors: Richard Berger, Jeff Haggard
  • Publication number: 20050032450
    Abstract: A nonwoven web product including ultra-fine fibers is formed utilizing a spunbond apparatus that forms multicomponent fibers by delivering first and second polymer components in a molten state from a spin pack to a spinneret, extruding multicomponent fibers including the first and second polymer components from the spinneret, attenuating the multicomponent fibers in an aspirator, laying down the multicomponent fibers on an elongated forming surface disposed downstream from the aspirator to form a nonwoven web, and bonding portions of at least some of the fibers in the nonwoven web together to form a bonded, nonwoven web product. The multicomponent fibers can include separable segments such as islands-in-the-sea fibers, where certain separated segments become the ultra-fine fibers in the web product.
    Type: Application
    Filed: June 4, 2004
    Publication date: February 10, 2005
    Inventors: Jeff Haggard, Arnold Wilkie, James Brang, Jerry Taylor