Patents by Inventor Jeff Hawks

Jeff Hawks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230203806
    Abstract: A sound damping wallboard for installation on an installed wallboard, a sound damping wallboard system, and a method of constructing a sound damping wallboard on a building structure are disclosed. The sound damping wallboard includes a gypsum layer having a gypsum layer inner surface and a gypsum layer outer surface, a first sound damping layer disposed at the gypsum layer inner surface and having a first sound damping layer inner surface opposite the gypsum layer inner surface, a first encasing layer disposed at the gypsum layer outer surface, a second encasing layer disposed at the first sound damping layer inner surface, and a second sound damping layer disposed at the second encasing layer opposite the first sound damping layer inner surface.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Jeff Hawk, Tommy Wilson, Michael N. Blades, Joseph J. Bailey, Brian G. Randall
  • Patent number: 11598087
    Abstract: A sound damping wallboard for installation on an installed wallboard, a sound damping wallboard system, and a method of constructing a sound damping wallboard on a building structure are disclosed. The sound damping wallboard includes a gypsum layer having a gypsum layer inner surface and a gypsum layer outer surface, a first sound damping layer disposed at the gypsum layer inner surface and having a first sound damping layer inner surface opposite the gypsum layer inner surface, a first encasing layer disposed at the gypsum layer outer surface, a second encasing layer disposed at the first sound damping layer inner surface, and a second sound damping layer disposed at the second encasing layer opposite the first sound damping layer inner surface.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 7, 2023
    Assignee: Gold Bond Building Products, LLC
    Inventors: Jeff Hawk, Tommy Wilson, Michael N. Blades, Joseph J. Bailey, Brian G. Randall
  • Publication number: 20200330170
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Shane Farritor, Mark Rentschler, Amy Lehman, Stephen Platt, Jeff Hawks
  • Patent number: 10695137
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 30, 2020
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Mark Rentschler, Amy Lehman, Stephen Platt, Jeff Hawks
  • Publication number: 20180347182
    Abstract: A sound damping wallboard for installation on an installed wallboard, a sound damping wallboard system, and a method of constructing a sound damping wallboard on a building structure are disclosed. The sound damping wallboard includes a gypsum layer having a gypsum layer inner surface and a gypsum layer outer surface, a first sound damping layer disposed at the gypsum layer inner surface and having a first sound damping layer inner surface opposite the gypsum layer inner surface, a first encasing layer disposed at the gypsum layer outer surface, a second encasing layer disposed at the first sound damping layer inner surface, and a second sound damping layer disposed at the second encasing layer opposite the first sound damping layer inner surface.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 6, 2018
    Inventors: Jeff Hawk, Tommy Wilson, Michael N. Blades, Joseph J. Bailey, Brian G. Randall
  • Publication number: 20180250082
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Application
    Filed: April 30, 2018
    Publication date: September 6, 2018
    Inventors: Shane Farritor, Mark Rentschler, Amy Lehman, Stephen Platt, Jeff Hawks
  • Patent number: 9956043
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 1, 2018
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Michael Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks
  • Publication number: 20140350574
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Shane Michael Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks
  • Patent number: 8828024
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 9, 2014
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane M. Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks
  • Patent number: 8343171
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: January 1, 2013
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane M. Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks
  • Publication number: 20120179168
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Application
    Filed: December 19, 2011
    Publication date: July 12, 2012
    Applicant: The Board of Regents of the University of Nebraska (UNeMed)
    Inventors: Shane M. Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks
  • Publication number: 20090054909
    Abstract: The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient's cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms.
    Type: Application
    Filed: July 11, 2008
    Publication date: February 26, 2009
    Applicant: Board of Regents of the University of Nebraska
    Inventors: Shane M. Farritor, Mark Rentschler, Amy Lehman, Stephen R. Platt, Jeff Hawks