Patents by Inventor Jeff Hrkach

Jeff Hrkach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9835572
    Abstract: The present disclosure relates in part to pharmaceutical compositions comprising polymeric nanoparticles having certain glass transition temperatures. Other aspects of the invention include methods of making such nanoparticles.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 5, 2017
    Assignee: PFIZER INC.
    Inventors: Stephen E. Zale, Greg Troiano, Mir M. Ali, Jeff Hrkach, James Wright
  • Publication number: 20170266293
    Abstract: The present disclosure relates in part to methods of treating cholangiocarcinoma or tonsillar cancer in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a nanoparticle composition, wherein nanoparticle composition comprises nanoparticles.
    Type: Application
    Filed: May 23, 2017
    Publication date: September 21, 2017
    Applicant: PFIZER INC.
    Inventors: STEPHEN E. ZALE, GREG TROIANO, MIR MUKKARAM ALI, JEFF HRKACH, JAMES WRIGHT
  • Patent number: 9579386
    Abstract: The present disclosure generally relates to nanoparticles having about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol. Other aspects of the invention include methods of making such nanoparticles.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: February 28, 2017
    Assignee: Pfizer Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 9579284
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a mTOR inhibitor; and about 70 to about 99 weight percent biocompatible polymer.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: February 28, 2017
    Assignee: Pfizer Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Publication number: 20160356732
    Abstract: The present disclosure relates in part to pharmaceutical compositions comprising polymeric nanoparticles having certain glass transition temperatures. Other aspects of the invention include methods of making such nanoparticles.
    Type: Application
    Filed: February 5, 2016
    Publication date: December 8, 2016
    Inventors: Stephen E. Zale, Greg Troiano, Mir M. Ali, Jeff Hrkach, James Wright
  • Publication number: 20160338963
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a vinca alkaloid; and about 50 to about 99 weight percent biocompatible polymer.
    Type: Application
    Filed: April 25, 2016
    Publication date: November 24, 2016
    Inventors: Stephen E. Zale, Greg Troiano, Mir M. Ali, Jeff Hrkach, James Wright
  • Patent number: 9393310
    Abstract: The present disclosure generally relates to nanoparticles having about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol. Other aspects of the invention include methods of making such nanoparticles.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: July 19, 2016
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 9351933
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a vinca alkaloid; and about 50 to about 99 weight percent biocompatible polymer.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: May 31, 2016
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 9308179
    Abstract: The present disclosure is directed in part to a biocompatible nanoparticle composition comprising a plurality of non-colloidal long circulating nanoparticles, each comprising a ?-hydroxy polyester-co-polyether and a therapeutic agent, wherein such disclosed compositions provide a therapeutic effect for at least 12 hours.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 12, 2016
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir M. Ali, Jeff Hrkach, James Wright
  • Publication number: 20160045608
    Abstract: The present disclosure is directed in part to a biocompatible nanoparticle composition comprising a plurality of non-colloidal long circulating nanoparticles, each comprising a ?-hydroxy polyester-co-polyether and a therapeutic agent, wherein such disclosed compositions provide a therapeutic effect for at least 12 hours.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 18, 2016
    Inventors: Stephen E. Zale, Greg Troiano, Mir M. Ali, Jeff Hrkach, James Wright
  • Patent number: 9198874
    Abstract: The present disclosure is directed in part to a biocompatible nanoparticle composition comprising a plurality of non-colloidal long circulating nanoparticles, each comprising a ?-hydroxy polyester-co-polyether and a therapeutic agent, wherein such disclosed compositions provide a therapeutic effect for at least 12 hours.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 1, 2015
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Publication number: 20150017245
    Abstract: The present disclosure relates in part to methods of treating cholangiocarcinoma or tonsillar cancer in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a nanoparticle composition, wherein nanoparticle composition comprises nanoparticles.
    Type: Application
    Filed: September 24, 2012
    Publication date: January 15, 2015
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 8912212
    Abstract: The present disclosure relates in part to pharmaceutical compositions comprising polymeric nanoparticles having certain glass transition temperatures. Other aspects of the invention include methods of making such nanoparticles.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 16, 2014
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Publication number: 20140186453
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a mTOR inhibitor; and about 70 to about 99 weight percent biocompatible polymer.
    Type: Application
    Filed: November 27, 2013
    Publication date: July 3, 2014
    Applicant: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 8734846
    Abstract: This application provides nanoparticles and methods of making nanoparticles using pre-functionalized poly(ethylene glycol)(also referred to as PEG) as a macroinitiator for the synthesis of diblock copolymers. Ring opening polymerization yields the desired poly(ester)-poly (ethylene glycol)-targeting agent polymer that is used to impart targeting capability to therapeutic nanoparticles. This “polymerization from” approach typically employs precursors of the targeting agent wherein the reactivity of functional groups of the targeting agent is masked using protecting groups. Also described is a “coupling to” that utilized the poly(ethylene glycol)-targeting agent conjugate where the targeting agent remains in its native un-protected form. This method uses “orthogonal” chemistry that exhibit no cross reactivity towards functional groups typically found within targeting agents of interest.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 27, 2014
    Assignee: Bind Biosciences, Inc.
    Inventors: Mir M. Ali, Jeff Hrkach, Stephen E. Zale, Luis Alvarez de Cienfuegos
  • Publication number: 20140093579
    Abstract: The present disclosure is directed in part to a biocompatible nanoparticle composition comprising a plurality of non-colloidal long circulating nanoparticles, each comprising a ?-hydroxy polyester-co-polyether and a therapeutic agent, wherein such disclosed compositions provide a therapeutic effect for at least 12 hours.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Publication number: 20140030351
    Abstract: The present disclosure relates in part to pharmaceutical compositions comprising polymeric nanoparticles having certain glass transition temperatures. Other aspects of the invention include methods of making such nanoparticles.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 8623417
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a mTOR inhibitor; and about 70 to about 99 weight percent biocompatible polymer.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: January 7, 2014
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Patent number: 8617608
    Abstract: The present disclosure generally relates to nanoparticles having about 0.2 to about 35 weight percent of a therapeutic agent; and about 10 to about 99 weight percent of biocompatible polymer such as a diblock poly(lactic) acid-poly(ethylene)glycol. Other aspects of the invention include methods of making such nanoparticles.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: December 31, 2013
    Assignee: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright
  • Publication number: 20130344158
    Abstract: The present disclosure generally relates to therapeutic nanoparticles. Exemplary nanoparticles disclosed herein may include about 1 to about 20 weight percent of a mTOR inhibitor; and about 70 to about 99 weight percent biocompatible polymer.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 26, 2013
    Applicant: BIND Therapeutics, Inc.
    Inventors: Stephen E. Zale, Greg Troiano, Mir Mukkaram Ali, Jeff Hrkach, James Wright