Patents by Inventor Jeff Hudgens
Jeff Hudgens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12170220Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: GrantFiled: September 8, 2022Date of Patent: December 17, 2024Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Publication number: 20240284650Abstract: A coated chamber component comprises a chamber component and a coating deposited on a surface of the chamber component, the coating comprising an electrically-dissipative material. The electrically-dissipative material is to provide a dissipative path from the coating to a ground. The coating is uniform, conformal, and has a thickness ranging from about 10 nm to about 900 nm.Type: ApplicationFiled: April 26, 2024Publication date: August 22, 2024Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Patent number: 12004337Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: GrantFiled: November 10, 2022Date of Patent: June 4, 2024Assignee: Applied Materials, Inc.Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Publication number: 20240075613Abstract: Disclosed herein are multi-turn drive assemblies, systems and methods of use thereof. The multi-turn drive assemblies enable a robot link member to have a maximum rotation of at least 360 degrees about an axis. The multi-turn drive assemblies can be incorporated into a robot arm for enabling 360 degrees rotation of one or more link members about an axis. The robot arm may be located in a transfer chamber of an electronic device processing system. Also disclosed are methods of controlling the multi-turn drive assemblies and related robots.Type: ApplicationFiled: November 3, 2023Publication date: March 7, 2024Inventors: Jeff Hudgens, Damon K. Cox, Rajkumar Thanu
-
Patent number: 11850745Abstract: Disclosed herein are multi-turn drive assemblies, systems and methods of use thereof. The multi-turn drive assemblies enable a robot link member to have a maximum rotation of at least 360 degrees about an axis. The multi-turn drive assemblies can be incorporated into a robot arm for enabling 360 degrees rotation of one or more link members about an axis. The robot arm may be located in a transfer chamber of an electronic device processing system. Also disclosed are methods of controlling the multi-turn drive assemblies and related robots.Type: GrantFiled: August 12, 2022Date of Patent: December 26, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Jeff Hudgens, Damon K. Cox, Rajkumar Thanu
-
Patent number: 11749540Abstract: Disclosed is a wafer processing system, a dual gate system, and methods for operating these systems. The dual gate system may have a shaft, a first gate and a second gate coupled to the shaft at opposite sides thereof, and an actuator coupled to the shaft. The actuator is configured to tilt together the shaft, the first gate, and the second gate to a first sealed gate position or to a second sealed gate position. The actuator can be operated using a pneumatic mechanism, an electro-magnetic mechanism, or a cam follower mechanism.Type: GrantFiled: August 21, 2020Date of Patent: September 5, 2023Assignee: Applied Materials, Inc.Inventors: Nir Merry, Jeff Hudgens
-
Publication number: 20230077895Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: ApplicationFiled: November 10, 2022Publication date: March 16, 2023Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Publication number: 20230005783Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: ApplicationFiled: September 8, 2022Publication date: January 5, 2023Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 11547030Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: GrantFiled: June 2, 2020Date of Patent: January 3, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Patent number: 11540432Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: GrantFiled: June 2, 2020Date of Patent: December 27, 2022Assignee: Applied Materials, Inc.Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Publication number: 20220388158Abstract: Disclosed herein are multi-turn drive assemblies, systems and methods of use thereof. The multi-turn drive assemblies enable a robot link member to have a maximum rotation of at least 360 degrees about an axis. The multi-turn drive assemblies can be incorporated into a robot arm for enabling 360 degrees rotation of one or more link members about an axis. The robot arm may be located in a transfer chamber of an electronic device processing system. Also disclosed are methods of controlling the multi-turn drive assemblies and related robots.Type: ApplicationFiled: August 12, 2022Publication date: December 8, 2022Inventors: Jeff Hudgens, Damon K. Cox, Rajkumar Thanu
-
Patent number: 11443973Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: GrantFiled: July 7, 2020Date of Patent: September 13, 2022Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Patent number: 11413744Abstract: Disclosed herein are multi-turn drive assemblies, systems and methods of use thereof. The multi-turn drive assemblies enable a robot link member to have a maximum rotation of at least 360 degrees about an axis. The multi-turn drive assemblies can be incorporated into a robot arm for enabling 360 degrees rotation of one or more link members about an axis. The robot arm may be located in a transfer chamber of an electronic device processing system. Also disclosed are methods of controlling the multi-turn drive assemblies and related robots.Type: GrantFiled: March 3, 2020Date of Patent: August 16, 2022Assignee: Applied Materials, Inc.Inventors: Jeff Hudgens, Damon K. Cox, Rajkumar Thanu
-
Patent number: 11355367Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.Type: GrantFiled: July 7, 2020Date of Patent: June 7, 2022Assignee: Applied Materials, Inc.Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Publication number: 20220059373Abstract: Disclosed is a wafer processing system, a dual gate system, and methods for operating these systems. The dual gate system may have a shaft, a first gate and a second gate coupled to the shaft at opposite sides thereof, and an actuator coupled to the shaft. The actuator is configured to tilt together the shaft, the first gate, and the second gate to a first sealed gate position or to a second sealed gate position. The actuator can be operated using a pneumatic mechanism, an electro-magnetic mechanism, or a cam follower mechanism.Type: ApplicationFiled: August 21, 2020Publication date: February 24, 2022Inventors: Nir Merry, Jeff Hudgens
-
Publication number: 20210276180Abstract: Disclosed herein are multi-turn drive assemblies, systems and methods of use thereof. The multi-turn drive assemblies enable a robot link member to have a maximum rotation of at least 360 degrees about an axis. The multi-turn drive assemblies can be incorporated into a robot arm for enabling 360 degrees rotation of one or more link members about an axis. The robot arm may be located in a transfer chamber of an electronic device processing system. Also disclosed are methods of controlling the multi-turn drive assemblies and related robots.Type: ApplicationFiled: March 3, 2020Publication date: September 9, 2021Inventors: Jeff Hudgens, Damon K. Cox, Rajkumar Thanu
-
Publication number: 20210100141Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: ApplicationFiled: June 2, 2020Publication date: April 1, 2021Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Publication number: 20210100087Abstract: Disclosed in some embodiments is a chamber component (such as an end effector body) coated with an ultrathin electrically-dissipative material to provide a dissipative path from the coating to the ground. The coating may be deposited via a chemical precursor deposition to provide a uniform, conformal, and porosity free coating in a cost effective manner. In an embodiment wherein the chamber component comprises an end effector body, the end effector body may further comprise replaceable contact pads for supporting a substrate and the contact surface of the contact pads head may also be coated with an electrically-dissipative material.Type: ApplicationFiled: June 2, 2020Publication date: April 1, 2021Inventors: Gayatri Natu, Geetika Bajaj, Prerna Goradia, Darshan Thakare, David Fenwick, XiaoMing He, Sanni Seppaelae, Jennifer Sun, Rajkumar Thanu, Jeff Hudgens, Karuppasamy Muthukamatchy, Arun Dhayalan
-
Publication number: 20210013068Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region, and including substrate supports and a transfer apparatus. The transfer apparatus may include a central hub having a housing, and including a first shaft and a second shaft. The housing may be coupled with the second shaft, and may define an internal housing volume. The transfer apparatus may include a plurality of arms equal to a number of substrate supports of the plurality of substrate supports. Each arm of the plurality of arms may be coupled about an exterior of the housing. The transfer apparatus may include a plurality of arm hubs disposed within the internal housing volume. Each arm hub of the plurality of arm hubs may be coupled with an arm of the plurality of arms through the housing. The arm hubs may be coupled with the first shaft of the central hub.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Charles T. Carlson, Luke Bonecutter, David Blahnik, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon
-
Publication number: 20210013084Abstract: Exemplary substrate processing systems may include a transfer region housing defining a transfer region fluidly coupled with a plurality of processing regions. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft counter-rotatable with the first shaft. The transfer apparatus may include an eccentric hub extending at least partially through the central hub, and which is radially offset from a central axis of the central hub. The transfer apparatus may also include an end effector coupled with the eccentric hub. The end effector may include a plurality of arms having a number of arms equal to the number of substrate supports of the plurality of substrate supports.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: Applied Materials, Inc.Inventors: Jason M. Schaller, Luke Bonecutter, Charles T. Carlson, Rajkumar Thanu, Karuppasamy Muthukamatchi, Jeff Hudgens, Benjamin Riordon