Patents by Inventor Jeff Linnell

Jeff Linnell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10059003
    Abstract: In one aspect, a method is described. The method may include providing an end effector tool of a robotic device configured to perform a task on a work surface within a worksite coordinate frame. The method may further include providing first location data indicating a first location of the end effector tool with respect to the work surface, providing second location data indicating a second location of the end effector tool within the worksite coordinate frame, and providing third location data indicating a third location of the end effector tool within the worksite coordinate frame. The method may further include tracking the location of the end effector tool based on the first, second, and third location data, and, based on the tracked location of the tool, instructing the robotic device to manipulate the end effector tool to perform a task on the work surface.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: August 28, 2018
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Marek Michalowski, Anthony Sean Jules
  • Patent number: 9950465
    Abstract: An example system includes: (i) a resin container defining a cavity; (ii) a plurality of rods extending from an inner base surface of the resin container and into the cavity; (iii) a plurality of light sources arranged to emit radiation into the plurality of rods, such that when the cavity contains liquid resin, radiation passing through a given one of the rods cures liquid resin that surrounds the given rod; and (iv) a control system configured to: (a) receive data specifying a three-dimensional structure; (b) determine a shape for a layer of a plurality of layers that collectively form the three-dimensional structure; and (c) determine one or more of the light sources that correspond to the shape of the layer; and (d) form the layer by operating the one or more determined light sources that correspond to the shape of the layer.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: April 24, 2018
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Publication number: 20180071982
    Abstract: An example system includes: (i) a resin container defining a cavity; (ii) a plurality of rods extending from an inner base surface of the resin container and into the cavity; (iii) a plurality of light sources arranged to emit radiation into the plurality of rods, such that when the cavity contains liquid resin, radiation passing through a given one of the rods cures liquid resin that surrounds the given rod; and (iv) a control system configured to: (a) receive data specifying a three-dimensional structure; (b) determine a shape for a layer of a plurality of layers that collectively form the three-dimensional structure; and (c) determine one or more of the light sources that correspond to the shape of the layer; and (d) form the layer by operating the one or more determined light sources that correspond to the shape of the layer.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 15, 2018
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Publication number: 20180041667
    Abstract: A system for motion control is presented. In one embodiment, a motion control 3D projection system includes a projector; and a projection surface coupled to a robotic arm, where the robotic arm moves the projection surface through a set of spatial coordinates, and a 3D projection from the projector is projected onto a set of coordinates of the projection surface and matches the 3D projection to the set of coordinates of the projection surface as the projection surface moves through the set of spatial coordinates. In additional embodiments, a master control system may integrate additional robotic arms and other devices to create a motion control scene with a master timeline.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 8, 2018
    Inventor: Jeff Linnell
  • Publication number: 20180029227
    Abstract: A robotic system includes one or more end-effectors that combine, according to a production process, at least one object and structure(s) at a production site. Sensor(s) generate, from the production site, sensor data relating to the production process. A control system stores specifications for the production process based on a model of the production site and/or the at least one object. The control system: receives, from the sensor(s), the sensor data; determines, from the sensor data, properties of at least one of: the production site or the at least one object; determines difference(s) between the properties and the model; determine(s) adjustment(s) to the production process based on the difference(s); and sends, for the end-effector(s), instruction(s) for combining the at least one object and the structure(s) based on the specifications and the one or more adjustments to the production process.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans
  • Publication number: 20180029235
    Abstract: A robotic system includes end-effector(s) that combine a plurality of objects in a production process. The system includes sensor(s) that obtain measurement(s) relating to a combination of a first object and one or more other objects during the production process. The system includes a control system communicatively coupled to the sensor(s). The control system stores specifications relating to the combination of the plurality of objects. The control system receives the measurement(s) from the sensor(s), determines a difference based on the measurement(s) and the specifications, determines adjustment(s) to the production process based on the determined difference, and sends, for the end-effector(s), instruction(s) based on the specifications and the one or more adjustment(s). The end-effector(s) combine a second object with the first object and the one or more objects based on the specifications and the one or more adjustment(s).
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Jeff Linnell, Anthony Jules, Marek Michalowski, Kendra Byrne, Jonathan Proto, Brandon Kruysman, Eli Reekmans, Matthew Bitterman, Michael Scott Beardsworth
  • Patent number: 9840347
    Abstract: In response to a request to package item(s), embodiments determine characteristic data for the item(s), which include an indication of a volume of each item. Container(s) for packaging the item(s) is determined based at least on the volume of each item. An arrangement of the item(s) in the container(s) is determined. One or more protective structures including one or more features are configured to position the item(s) in the container(s) according to the arrangement. Relative positions are determined for a plurality of modular elements to form the one or more protective structures. Subsets of the plurality of modular elements are deposited to corresponding relative positions to form at least one of the protective structures. The item(s) are packaged in the container(s) with the one or more protective structures to position the item(s) in the container(s) in the arrangement.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: December 12, 2017
    Assignee: X Development LLX
    Inventors: Jeff Linnell, Matthew Bitterman
  • Patent number: 9840045
    Abstract: An example system includes: (i) a resin container defining a cavity; (ii) a plurality of rods extending from an inner base surface of the resin container and into the cavity; (iii) a plurality of light sources arranged to emit radiation into the plurality of rods, such that when the cavity contains liquid resin, radiation passing through a given one of the rods cures liquid resin that surrounds the given rod; and (iv) a control system configured to: (a) receive data specifying a three-dimensional structure; (b) determine a shape for a layer of a plurality of layers that collectively form the three-dimensional structure; and (c) determine one or more of the light sources that correspond to the shape of the layer; and (d) form the layer by operating the one or more determined light sources that correspond to the shape of the layer.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: December 12, 2017
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Patent number: 9832352
    Abstract: A system for motion control is presented. In one embodiment, a motion control 3D projection system includes a projector; and a projection surface coupled to a robotic arm, where the robotic arm moves the projection surface through a set of spatial coordinates, and a 3D projection from the projector is projected onto a set of coordinates of the projection surface and matches the 3D projection to the set of coordinates of the projection surface as the projection surface moves through the set of spatial coordinates. In additional embodiments, a master control system may integrate additional robotic arms and other devices to create a motion control scene with a master timeline.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 28, 2017
    Assignee: Autofuss
    Inventor: Jeff Linnell
  • Patent number: 9827713
    Abstract: A 3D printing process may form a 3D object by alternatingly forming layers from a liquid resin and a solid. For instance, when printing a 3D object, the 3D printer may at least partially cure a layer of liquid resin, and before the curing of the resin is complete, dip the semi-cured resin into a vat containing graphene powder so as to create a super strong 3D object. As another example, each semi-cured resin layer could be pressed into a vat of fiberglass such that the fiberglass is coupled to the semi-cured resin. The resin may then be allowed to finish curing before the next layer of resin is formed. In other embodiments, this process could be used to embed sensors in 3D printed objects.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: November 28, 2017
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Patent number: 9828128
    Abstract: Example methods and systems are disclosed for on-demand packaging of one or more items. According to one example, a method can include receiving an order for the item(s) and determining characteristic-information for the item(s) using a computer system. The characteristic-information includes an indication of at least a size and a shape of the item(s). The method also includes processing the characteristic-information based on design criteria to determine an arrangement of the item(s) within at least one container volume, and a configuration for a protective structure to hold the item(s) in the arrangement within the container volume(s). The method can further include, in response to the processing the characteristic-information, forming the protective structure according to the configuration, placing the item(s) into the protective structure according to the arrangement, and placing the protective structure and the item(s) in the container volume(s).
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: November 28, 2017
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Matthew Bitterman, Tobias Kinnebrew
  • Publication number: 20170297264
    Abstract: Described herein are three-dimensional (3D) printer systems and methods, which may provide for “continuous pull” 3D printing. An illustrative 3D printer includes: a resin container, a base plate, a light source arranged below the resin container and operable to cure resin in the resin container; and a control system operable to: (a) receive model data specifying a 3D structure; (b) determine 2D images corresponding to layers of the 3D object; and (c) generate control signals to operate the light source and the base plate to sequentially form the layers of the 3D object onto the base plate, wherein the base plate moves a formed portion of the 3D object upward after formation of each layer, and wherein at least a surface of a formed portion of the 3D object remains in contact with the resin in the resin container throughout the formation of the layers of the 3D object.
    Type: Application
    Filed: August 26, 2015
    Publication date: October 19, 2017
    Inventors: Jeff Linnell, Jonathan Proto, Brandon Kruysman, Steven Moody
  • Patent number: 9757859
    Abstract: Robotic control systems and methods may include providing an end effector tool of a robotic device configured to perform a task on a work surface within a worksite coordinate frame. Unintended movement over time of the end effector tool with respect to the work surface and with respect to the worksite coordinate frame may be determined based on image data indicative of the work surface, first location data indicative of a first location of the end effector tool with respect to the worksite coordinate frame, and second location data indicative of a second location of the end effector tool with respect to the work surface. One or more control signals for the robotic device may be adjusted in order to counteract the unintended movements of the end effector tool with respect to the work surface and worksite coordinate frame.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: September 12, 2017
    Assignee: X Development LLC
    Inventors: Michael Kolb, Jeff Linnell, Anthony Sean Jules
  • Patent number: 9737987
    Abstract: Disclosed are systems and methods for detecting a graphic card that visually describes an operational mode of a rotatable interface component via a plurality of curves for rotationally-varying parameters, determining the operational mode that is visually described on the graphic card, and loading the operational mode to the rotatable interface component, where the operational mode specifies operations for a motor such that the motor generates torque on the interface component based on the curves for the rotationally-varying parameters that are shown on the graphic card.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: August 22, 2017
    Assignee: X Development LLC
    Inventors: Jeff Linnell, Anthony Sean Jules, Matthew Bitterman, Eli Reekmans, Kendra Byrne
  • Patent number: 9472011
    Abstract: A system for motion control is presented. In one embodiment, a motion control 3D projection system includes a projector; and a projection surface coupled to a robotic arm, where the robotic arm moves the projection surface through a set of spatial coordinates, and a 3D projection from the projector is projected onto a set of coordinates of the projection surface and matches the 3D projection to the set of coordinates of the projection surface as the projection surface moves through the set of spatial coordinates. In additional embodiments, a master control system may integrate additional robotic arms and other devices to create a motion control scene with a master timeline.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 18, 2016
    Assignee: Google Inc.
    Inventor: Jeff Linnell
  • Publication number: 20160185045
    Abstract: An example system includes: (i) a resin container defining a cavity; (ii) a plurality of rods extending from an inner base surface of the resin container and into the cavity; (iii) a plurality of light sources arranged to emit radiation into the plurality of rods, such that when the cavity contains liquid resin, radiation passing through a given one of the rods cures liquid resin that surrounds the given rod; and (iv) a control system configured to: (a) receive data specifying a three-dimensional structure; (b) determine a shape for a layer of a plurality of layers that collectively form the three-dimensional structure; and (c) determine one or more of the light sources that correspond to the shape of the layer; and (d) form the layer by operating the one or more determined light sources that correspond to the shape of the layer.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Jeff Linnell, Brandon Kruysman, Jonathan Proto
  • Patent number: 9160898
    Abstract: Systems and methods for creating a motion control photography set are disclosed. One embodiment includes a master control that receives control signals for a plurality of device actors, such as robot arms, lighting, and camera controls, and synchronizes the plurality of control signals with a global timeline to create a plurality of synchronized signals, such that the control data for each actor of the device actors is associated with a corresponding position in the global timeline. According to another embodiment, the set also includes a master input that conveys a master input signal to the master control indicating a position in the global timeline and a rate of progression through the global timeline. In response to the master input signal, the control data for each actor of the device actors is sent to respective device actors at an adjustable rate of progression through the global timeline.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 13, 2015
    Assignee: Autofuss
    Inventors: Asa Hammond, Jeff Linnell, Kendra Byrne
  • Publication number: 20140354787
    Abstract: A system for motion control is presented. In one embodiment, a motion control 3D projection system includes a projector; and a projection surface coupled to a robotic arm, where the robotic arm moves the projection surface through a set of spatial coordinates, and a 3D projection from the projector is projected onto a set of coordinates of the projection surface and matches the 3D projection to the set of coordinates of the projection surface as the projection surface moves through the set of spatial coordinates. In additional embodiments, a master control system may integrate additional robotic arms and other devices to create a motion control scene with a master timeline.
    Type: Application
    Filed: February 26, 2014
    Publication date: December 4, 2014
    Applicant: Autofuss
    Inventor: Jeff Linnell
  • Publication number: 20120188350
    Abstract: Systems and methods for creating a motion control photography set are disclosed. One embodiment includes a master control that receives control signals for a plurality of device actors, such as robot arms, lighting, and camera controls, and synchronizes the plurality of control signals with a global timeline to create a plurality of synchronized signals, such that the control data for each actor of the device actors is associated with a corresponding position in the global timeline. According to another embodiment, the set also includes a master input that conveys a master input signal to the master control indicating a position in the global timeline and a rate of progression through the global timeline. In response to the master input signal, the control data for each actor of the device actors is sent to respective device actors at an adjustable rate of progression through the global timeline.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 26, 2012
    Inventors: Asa Hammond, Jeff Linnell, Kendra Byrne