Patents by Inventor Jeff R. Justis

Jeff R. Justis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931051
    Abstract: An instrument for setting a position of a resection of a distal femur or a proximal tibia in a total knee arthroplasty, the instrument comprising: a stable portion, the stable portion configured for orientation in a set position relative to said distal femur or said proximal tibia; a resection guide portion, the resection guide portion configured to guide a resection path for said resection; a resection guide body, the resection guide body associated with the resection guide portion in a fixed orientation; the resection guide body pivotally connected to the stable portion, whereby pivoting adjustment of the resection guide body on the stable portion sets a resection orientation of the resection guide portion; and the resection guide body having a lock for selectively locking the resection guide body to the stable portion at a plurality of selectable resection orientations.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: March 19, 2024
    Assignee: Steensen Orthopedics Systems, LLC
    Inventors: Robert N. Steensen, Brian R. Harris, Jeff R. Justis
  • Publication number: 20240057930
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Richard L. BROWN, John G. POLLOCK, Jeff R. JUSTIS, Kevin L. McFARLIN, Randal C. SCHULHAUSER, Tyler S. STEVENSON
  • Patent number: 11801005
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 31, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Richard L. Brown, John G. Pollock, Jeff R. Justis, Kevin L. McFarlin, Randal C. Schulhauser, Tyler S. Stevenson
  • Patent number: 11749409
    Abstract: A system including a range of motion module, a quality of sleep module, an overall module, and a control module. The range of motion module, subsequent to performing a procedure on a patient, determines a first range of motion score of the patient based on a signal generated by a sensor. The quality of sleep module, subsequent to performing the procedure on the patient, determines a first quality of sleep score or a first pain score based on the signal generated by the sensor. The overall module determines a combined score based on (i) the first range of motion score, and (ii) the first sleep score or the first pain score. The control module (i) determines whether an outcome of the procedure is positive based on the combined score, and (ii) stores the determined outcome and the combined score in a memory.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: September 5, 2023
    Assignee: WARSAW ORTHOPEDIC, INC.
    Inventors: Randal Schulhauser, Richard L. Brown, Jeff R. Justis, Matthew M. Morrison, Jeff M. Cherry
  • Patent number: 11696719
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: July 11, 2023
    Assignee: Medtronic Xomed, Inc.
    Inventors: Richard L. Brown, John G. Pollock, Jeff R. Justis, Kevin L. McFarlin, Randal C. Schulhauser, Tyler S. Stevenson
  • Patent number: 11413085
    Abstract: A cryoprobe is used during surgery in a human body to remove unwanted tissue. The cryoprobe includes a first gas supply line and a second gas supply line for delivering a supply of cryogenic gas from at least adjacent a proximal end to at least adjacent a distal end of the cryoprobe. The cryoprobe further includes a first gas return line and a second gas return line for returning the supply of cryogenic gas from at least adjacent the distal end to at least adjacent the proximal end of the cryoprobe. At least a portion of the first gas supply line is received in the first gas return line. A transition portion having at least one internal cavity and an aperture from the at least one internal cavity to an exterior portion of the transition portion is also included in the cryoprobe.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 16, 2022
    Assignee: MEDTRONIC HOLDING COMPANY SÀRL
    Inventors: Lloyd M. Snyder, Brian D. Koch, Aneta Samaranska, Jeff R. Justis
  • Patent number: 11246603
    Abstract: An instrument for setting a position of a resection of a distal femur or a proximal tibia in a total knee arthroplasty, the instrument comprising: a stable portion, the stable portion configured for orientation in a set position relative to said distal femur or said proximal tibia; a resection guide portion, the resection guide portion configured to guide a resection path for said resection; a resection guide body, the resection guide body associated with the resection guide portion in a fixed orientation; the resection guide body pivotally connected to the stable portion, whereby pivoting adjustment of the resection guide body on the stable portion sets a resection orientation of the resection guide portion; and the resection guide body having a lock for selectively locking the resection guide body to the stable portion at a plurality of selectable resection orientations.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 15, 2022
    Inventors: Robert N. Steensen, Brian R. Harris, Jeff R. Justis
  • Publication number: 20220015772
    Abstract: An instrument for setting a position of a resection of a distal femur or a proximal tibia in a total knee arthroplasty, the instrument comprising: a stable portion, the stable portion configured for orientation in a set position relative to said distal femur or said proximal tibia; a resection guide portion, the resection guide portion configured to guide a resection path for said resection; a resection guide body, the resection guide body associated with the resection guide portion in a fixed orientation; the resection guide body pivotally connected to the stable portion, whereby pivoting adjustment of the resection guide body on the stable portion sets a resection orientation of the resection guide portion; and the resection guide body having a lock for selectively locking the resection guide body to the stable portion at a plurality of selectable resection orientations.
    Type: Application
    Filed: September 7, 2021
    Publication date: January 20, 2022
    Applicant: Microport Orthopedics Inc.
    Inventors: Robert N. Steensen, Brian R. Harris, Jeff R. Justis
  • Publication number: 20210407688
    Abstract: A system including a range of motion module, a quality of sleep module, an overall module, and a control module. The range of motion module, subsequent to performing a procedure on a patient, determines a first range of motion score of the patient based on a signal generated by a sensor. The quality of sleep module, subsequent to performing the procedure on the patient, determines a first quality of sleep score or a first pain score based on the signal generated by the sensor. The overall module determines a combined score based on (i) the first range of motion score, and (ii) the first sleep score or the first pain score. The control module (i) determines whether an outcome of the procedure is positive based on the combined score, and (ii) stores the determined outcome and the combined score in a memory.
    Type: Application
    Filed: September 14, 2021
    Publication date: December 30, 2021
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Jeff R. Justis, Matthew M. Morrison, Jeff M. Cherry
  • Patent number: 11145415
    Abstract: A system including a range of motion module, a quality of sleep module, an overall module, and a control module. The range of motion module, subsequent to performing a procedure on a patient, determines a first range of motion score of the patient based on a signal generated by a sensor. The quality of sleep module, subsequent to performing the procedure on the patient, determines a first quality of sleep score or a first pain score based on the signal generated by the sensor. The overall module determines a combined score based on (i) the first range of motion score, and (ii) the first sleep score or the first pain score. The control module (i) determines whether an outcome of the procedure is positive based on the combined score, and (ii) stores the determined outcome and the combined score in a memory.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: October 12, 2021
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Jeff R. Justis, Matthew M. Morrison, Jeff M. Cherry
  • Publication number: 20190378605
    Abstract: A system including a range of motion module, a quality of sleep module, an overall module, and a control module. The range of motion module, subsequent to performing a procedure on a patient, determines a first range of motion score of the patient based on a signal generated by a sensor. The quality of sleep module, subsequent to performing the procedure on the patient, determines a first quality of sleep score or a first pain score based on the signal generated by the sensor. The overall module determines a combined score based on (i) the first range of motion score, and (ii) the first sleep score or the first pain score. The control module (i) determines whether an outcome of the procedure is positive based on the combined score, and (ii) stores the determined outcome and the combined score in a memory.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Applicant: Warsaw Orthopedic, Inc.
    Inventors: Randal Schulhauser, Richard L. Brown, Jeff R. Justis, Matthew M. Morrison, Jeff M. Cherry
  • Patent number: 10445466
    Abstract: A system including a range of motion module, a quality of sleep module, an overall module, and a control module. The range of motion module, subsequent to performing a procedure on a patient, determines a first range of motion score of the patient based on a signal generated by a sensor. The quality of sleep module, subsequent to performing the procedure on the patient, determines a first quality of sleep score or a first pain score based on the signal generated by the sensor. The overall module determines a combined score based on (i) the first range of motion score, and (ii) the first sleep score or the first pain score. The control module (i) determines whether an outcome of the procedure is positive based on the combined score, and (ii) stores the determined outcome and the combined score in a memory.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: October 15, 2019
    Assignee: WARSAW ORTHOPEDIC, INC.
    Inventors: Randal Schulhauser, Richard L. Brown, Jeff R. Justis, Matthew M. Morrison, Jeff M. Cherry
  • Publication number: 20190231365
    Abstract: An instrument for setting a position of a resection of a distal femur or a proximal tibia in a total knee arthroplasty, the instrument comprising: a stable portion, the stable portion configured for orientation in a set position relative to said distal femur or said proximal tibia; a resection guide portion, the resection guide portion configured to guide a resection path for said resection; a resection guide body, the resection guide body associated with the resection guide portion in a fixed orientation; the resection guide body pivotally connected to the stable portion, whereby pivoting adjustment of the resection guide body on the stable portion sets a resection orientation of the resection guide portion; and the resection guide body having a lock for selectively locking the resection guide body to the stable portion at a plurality of selectable resection orientations.
    Type: Application
    Filed: January 25, 2019
    Publication date: August 1, 2019
    Applicants: Steensen Orthopedic Systems LLC, MicroPort Orthopedics Inc.
    Inventors: Robert N. Steensen, Brian R. Harris, Jeff R. Justis
  • Publication number: 20190021644
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Richard L. Brown, John G. Pollock, Jeff R. Justis, Kevin L. McFarlin, Randal C. Schulhauser, Tyler S. Stevenson
  • Publication number: 20190021643
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Richard L. Brown, John G. Pollock, Jeff R. Justis, Kevin L. McFarlin, Randal C. Schulhauser, Tyler S. Stevenson
  • Patent number: 10123731
    Abstract: A sensor including electrodes, a control module and a physical layer module. The electrodes are configured to (i) attach to a patient, and (ii) receive a first electromyographic signal from the patient. The control module is connected to the electrodes. The control module is configured to (i) detect the first electromyographic signal, and (ii) generate a first voltage signal. The physical layer module is configured to: receive a payload request from a console interface module or a nerve integrity monitoring device; and based on the payload request, (i) upconvert the first voltage signal to a first radio frequency signal, and (ii) wirelessly transmit the first radio frequency signal from the sensor to the console interface module or the nerve integrity monitoring device.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 13, 2018
    Assignee: Medtronic Xomed, Inc.
    Inventors: Richard L. Brown, John G. Pollock, Jeff R. Justis, Kevin L. McFarlin, Randal C. Schulhauser, Tyler S. Stevenson
  • Publication number: 20180323593
    Abstract: Connecting flanges are provided for use with an electrical box and a structural bracket. The connecting flanges have a side portion that is attached to the side of the electrical box. The connecting flanges also have a front portion that engages the structural bracket to secure the electrical box to the structural bracket. The connecting flanges may be used in pre-assembled and pre-wired electrical assemblies to simplify wiring at a building site.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 8, 2018
    Inventors: Jeff R. Justis, Robert H. Osborn, William T. Custead
  • Publication number: 20180310977
    Abstract: A combination of a cryoprobe and an introducer is used during surgery to ablate unwanted tissue. The introducer includes a handle portion, a cannula portion, a first internal cavity extending through the handle portion, and a second internal cavity extending through the cannula portion. The first and second internal cavities communicate with one another and are sized to receive a portion of a probe shaft of the cryoprobe therethrough. When the probe shaft is inserted into the first and second internal cavities in the introducer, the distal end of the probe shaft is positionable adjacent the distal end of the introducer, and operation of the cryoprobe facilitates cooling of a portion of the cannula portion at the distal end of the introducer.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 1, 2018
    Inventors: Lloyd M. Snyder, Brian D. Koch, Aneta Samaranska, Jeff R. Justis
  • Publication number: 20180310976
    Abstract: A cryoprobe is used during surgery in a human body to remove unwanted tissue. The cryoprobe includes a first gas supply line and a second gas supply line for delivering a supply of cryogenic gas from at least adjacent a proximal end to at least adjacent a distal end of the cryoprobe. The cryoprobe further includes a first gas return line and a second gas return line for returning the supply of cryogenic gas from at least adjacent the distal end to at least adjacent the proximal end of the cryoprobe. At least a portion of the first gas supply line is received in the first gas return line. A transition portion having at least one internal cavity and an aperture from the at least one internal cavity to an exterior portion of the transition portion is also included in the cryoprobe.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 1, 2018
    Inventors: Lloyd M. Snyder, Brian D. Koch, Aneta Samaranska, Jeff R. Justis
  • Patent number: 9918754
    Abstract: The present invention relates to a brace installation instrument placement that is mounted to anchors secured in an animal subject. The installation instrument includes anchor extensions coupled to the anchors. The instrument is movable with respect to the anchors to position a brace in a position more proximate the anchors. The brace can be indexed for insertion at a predetermined orientation with respect to the installation instrument. Methods and techniques for using the installation instrument are also provided.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: March 20, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Jeff R. Justis, Michael C. Sherman, Kevin T. Foley