Patents by Inventor Jeff Ramer
Jeff Ramer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10174439Abstract: A silicon wafer used in manufacturing crystalline GaN for light emitting diodes (LEDs) includes a silicon substrate, a buffer layer of aluminum nitride (AlN) and an upper layer of GaN. The silicon wafer has a diameter of at least 200 millimeters and an Si(111)1×1 surface. The AlN buffer layer overlies the Si(111) surface. The GaN upper layer is disposed above the buffer layer. Across the entire wafer substantially no aluminum atoms of the AlN are present in a bottom most plane of atoms of the AlN, and across the entire wafer substantially only nitrogen atoms of the AlN are present in the bottom most plane of atoms of the AlN. A method of making the AlN buffer layer includes preflowing a first amount of ammonia equaling less than 0.01% by volume of hydrogen flowing through a chamber before flowing trimethylaluminum and then a subsequent amount of ammonia through the chamber.Type: GrantFiled: March 22, 2017Date of Patent: January 8, 2019Assignee: Samsung Electronics Co., Ltd.Inventors: William E. Fenwick, Jeff Ramer
-
Publication number: 20170198410Abstract: A silicon wafer used in manufacturing crystalline GaN for light emitting diodes (LEDs) includes a silicon substrate, a buffer layer of aluminum nitride (AlN) and an upper layer of GaN. The silicon wafer has a diameter of at least 200 millimeters and an Si(111)1×1 surface. The AlN buffer layer overlies the Si(111) surface. The GaN upper layer is disposed above the buffer layer. Across the entire wafer substantially no aluminum atoms of the AlN are present in a bottom most plane of atoms of the AlN, and across the entire wafer substantially only nitrogen atoms of the AlN are present in the bottom most plane of atoms of the AlN. A method of making the AlN buffer layer includes preflowing a first amount of ammonia equaling less than 0.01% by volume of hydrogen flowing through a chamber before flowing trimethylaluminum and then a subsequent amount of ammonia through the chamber.Type: ApplicationFiled: March 22, 2017Publication date: July 13, 2017Inventors: Will Fenwick, Jeff Ramer
-
Patent number: 9617656Abstract: A method of making an aluminum nitride (AlN) buffer layer over a silicon wafer for a light emitting diode (LED) includes preflowing a first amount of ammonia that is sufficient to deposit nitrogen atoms on the surface of a silicon wafer without forming SiNx, before flowing trimethylaluminum and then a subsequent amount of ammonia through the chamber.Type: GrantFiled: July 7, 2014Date of Patent: April 11, 2017Assignee: Toshiba CorporationInventors: William E. Fenwick, Jeff Ramer
-
Patent number: 9012953Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: GrantFiled: February 7, 2014Date of Patent: April 21, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
-
Publication number: 20150056731Abstract: A light emitting device comprises a first layer having an n-type Group III-V semiconductor, a second layer adjacent to the first layer, the second layer comprising an active material that generates light upon the recombination of electrons and holes. The active material in some cases has one or more V-pits at a density between about 1 V-pit/?m2 and 30 V-pits/?m2. The light emitting device includes a third layer adjacent to the second layer, the third layer comprising a p-type Group III-V semiconductor.Type: ApplicationFiled: August 29, 2014Publication date: February 26, 2015Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Jeff RAMER, Steve TING
-
Publication number: 20140318443Abstract: A silicon wafer used in manufacturing crystalline GaN for light emitting diodes (LEDs) includes a silicon substrate, a buffer layer of aluminum nitride (AlN) and an upper layer of GaN, the silicon wafer has a diameter of at least 200 millimeters and an Si(111)1×1 surface. The AlN buffer layer overlies the Si(111) surface. The GaN upper layer is disposed above the buffer layer, Across the entire wafer substantially no aluminum atoms of the AlN are present in a bottom most plane of atoms of the AlN, and across the entire wafer substantially only nitrogen atoms of the AlN are present in the bottom most plane of atoms of the AlN. A method of making the AlN buffer layer includes preflowing a first amount of ammonia equaling less than 0.01% by volume of hydrogen flowing through a chamber before flowing trimethylaluminum and then a subsequent amount of ammonia through the chamber.Type: ApplicationFiled: July 7, 2014Publication date: October 30, 2014Applicant: MANUTIUS IP INC.Inventors: William E. FENWICK, Jeff RAMER
-
Patent number: 8853668Abstract: A light emitting device comprises a first layer having an n-type Group III-V semiconductor, a second layer adjacent to the first layer, the second layer comprising an active material that generates light upon the recombination of electrons and holes. The active material in some cases has one or more V-pits at a density between about 1 V-pit/?m2 and 30 V-pits/?m2. The light emitting device includes a third layer adjacent to the second layer, the third layer comprising a p-type Group III-V semiconductor.Type: GrantFiled: September 29, 2011Date of Patent: October 7, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Jeff Ramer, Steve Ting
-
Publication number: 20140225059Abstract: A light-emitting device having an n-type semiconductor layer having a plurality of pits with planar regions between the pits, the pits being characterized by sidewalk that intersect the planar regions is disclosed. A plurality of alternating sub-layers of materials having different bandgaps is deposited on the n-type semiconductor layer. The sub-layers have thicknesses such that the sub-layers form an active layer in the planar regions between the pits and a super lattice on the sidewalls of the pits. A p-type semiconductor layer is deposited on the plurality of alternating sub-layers. One of the sub-layers includes an electron blocking layer. The electron blocking layer is characterized by a first thickness in the substantially planar regions and a second thickness in areas adjacent to the sidewalls of the pits, the second thickness being less than the first thickness.Type: ApplicationFiled: February 8, 2013Publication date: August 14, 2014Applicant: BRIDGELUX, INC.Inventors: Long Yang, Steve Lester, Jeff Ramer
-
Publication number: 20140151728Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: ApplicationFiled: February 7, 2014Publication date: June 5, 2014Applicant: TOSHIBA TECHNO CENTER INC.Inventors: Steven LESTER, Jeff RAMER, Jun WU, Ling ZHANG
-
Patent number: 8684749Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: GrantFiled: August 5, 2013Date of Patent: April 1, 2014Assignee: Toshiba Techno Center Inc.Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
-
Publication number: 20130316483Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: ApplicationFiled: August 5, 2013Publication date: November 28, 2013Applicant: TOSHIBA TECHNO CENTER INC.Inventors: STEVEN LESTER, JEFF RAMER, JUN WU, LING ZHANG
-
Patent number: 8525221Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits lights when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: GrantFiled: November 25, 2009Date of Patent: September 3, 2013Assignee: Toshiba Techno Center, Inc.Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
-
Publication number: 20130082236Abstract: A light emitting device comprises a first layer having an n-type Group III-V semiconductor, a second layer adjacent to the first layer, the second layer comprising an active material that generates light upon the recombination of electrons and holes. The active material in some cases has one or more V-pits at a density between about 1 V-pit/?m2 and 30 V-pits/?m2. The light emitting device includes a third layer adjacent to the second layer, the third layer comprising a p-type Group III-V semiconductor.Type: ApplicationFiled: September 29, 2011Publication date: April 4, 2013Inventors: Jeff Ramer, Steve Ting
-
Publication number: 20130026480Abstract: A silicon wafer used in manufacturing crystalline GaN for light emitting diodes (LEDs) includes a silicon substrate, a buffer layer of aluminum nitride (AlN) and an upper layer of GaN. The silicon wafer has a diameter of at least 200 millimeters and an Si(111)1×1 surface. The AlN buffer layer overlies the Si(111) surface. The GaN upper layer is disposed above the buffer layer. Across the entire wafer substantially no aluminum atoms of the AlN are present in a bottom most plane of atoms of the AlN, and across the entire wafer substantially only nitrogen atoms of the AlN are present in the bottom most plane of atoms of the AlN. A method of making the AlN buffer layer includes preflowing a first amount of ammonia equaling less than 0.01% by volume of hydrogen flowing through a chamber before flowing trimethylaluminum and then a subsequent amount of ammonia through the chamber.Type: ApplicationFiled: July 25, 2011Publication date: January 31, 2013Applicant: Bridgelux, Inc.Inventors: William E. Fenwick, Jeff Ramer
-
Publication number: 20120058584Abstract: A light source and method for making the same are disclosed. The light source includes a substrate and a light emitting structure that is deposited on the substrate. A barrier divides the light emitting structure into first and second segments that are electrically isolated from one another. A serial connection electrode connects the first segment in series with the second segment. A first blocking diode between the light emitting structure and the substrate prevents current from flowing between the light emitting structure and the substrate when the light emitting structure is emitting light. The barrier extends through the light emitting structure into the first blocking diode.Type: ApplicationFiled: November 11, 2011Publication date: March 8, 2012Inventors: Ghulam Hasnain, Steven D. Lester, Syn-Yem Hu, Jeff Ramer
-
Patent number: 8084775Abstract: A light source and method for making the same are disclosed. The light source includes a substrate and a light emitting structure that is deposited on the substrate. A barrier divides the light emitting structure into first and second segments that are electrically isolated from one another. A serial connection electrode connects the first segment in series with the second segment. A first blocking diode between the light emitting structure and the substrate prevents current from flowing between the light emitting structure and the substrate when the light emitting structure is emitting light. The barrier extends through the light emitting structure into the first blocking diode.Type: GrantFiled: March 16, 2010Date of Patent: December 27, 2011Assignee: Bridgelux, Inc.Inventors: Ghulam Hasnain, Steven D. Lester, Syn-Yem Hu, Jeff Ramer
-
Publication number: 20110121357Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.Type: ApplicationFiled: November 25, 2009Publication date: May 26, 2011Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
-
Publication number: 20100219431Abstract: A light source and method for making the same are disclosed. The light source includes a substrate and a light emitting structure that is deposited on the substrate. A barrier divides the light emitting structure into first and second segments that are electrically isolated from one another. A serial connection electrode connects the first segment in series with the second segment. A first blocking diode between the light emitting structure and the substrate prevents current from flowing between the light emitting structure and the substrate when the light emitting structure is emitting light. The barrier extends through the light emitting structure into the first blocking diode.Type: ApplicationFiled: March 16, 2010Publication date: September 2, 2010Inventors: Ghulam Hasnain, Steven D. Lester, Syn-Yem Hu, Jeff Ramer