Patents by Inventor Jeff X. Wei
Jeff X. Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8964117Abstract: A frame construction engine constructs a first frame of deinterlaced video and a second frame of deinterlaced video based on a first field of interlaced video and based on a second field of interlaced video, independent of any other fields of interlaced video. The frame construction engine constructs the first frame of deinterlaced video by assigning pixel values from the first field of interlaced video to corresponding pixel locations in the first frame. The frame construction engine constructs the second frame of deinterlaced video by assigning pixel values from the second field of interlaced video to corresponding pixel locations in the second frame. Missing pixel locations in each of the frames are selected from a corresponding field of spatially interpolated pixel values or from an opposite field of deinterlaced video.Type: GrantFiled: September 28, 2007Date of Patent: February 24, 2015Assignee: ATI Technologies ULCInventor: Jeff X. Wei
-
Patent number: 8396129Abstract: A mipmap generator generates pairs of mipmaps that are each of a lower resolution that its respective source image. A single-pass, gradient-based motion vector generator generates an image motion vector map having values that represent the motion trajectories for pixels in the first and second source images. An image interpolator generates an interpolated image based on the source images and the image motion vector map. A motion detector generates a motion factor map based on a pair of mipmaps from those generated by the mipmap generator that represents a detected degree of motion between the first and second source images. The blending module generates a blended, upconverted new image using the motion factor map, the interpolated image and one of the first and second motion maps.Type: GrantFiled: December 28, 2007Date of Patent: March 12, 2013Assignee: ATI Technologies ULCInventor: Jeff X. Wei
-
Patent number: 8300987Abstract: An upscaler is disclosed that upscales each of a maximum value map, a minimum value map and an average value map to a destination resolution. A blending module generates a detail-enhanced upscaled image of the source image having the destination resolution by blending corresponding pixel values from an upscaled image of the source image with at least one of: the upscaled maximum value map and the upscaled minimum value map. The blending may be based on the strength of detected edges in the source image and further based on a comparison of each pixel value in the upscaled image with a corresponding pixel value in an average value map. A source image characteristic calculator may generate the maximum value map, the minimum value map and the average value map based on the intensity values of a source image.Type: GrantFiled: September 28, 2007Date of Patent: October 30, 2012Assignee: ATI Technologies ULCInventor: Jeff X. Wei
-
Patent number: 7945121Abstract: A method and apparatus for interpolating image information obtains pixel information for a plurality of pixels surrounding a location of a pixel to be interpolated, whether the pixel is a missing pixel or an existing pixel whose color or intensity information is to be changed, and applies a gradient square tensor operation on a plurality of surrounding pixels to determine if the pixel to be interpolated is part of a geometric feature. If it is determined that the interpolated pixel is part of a geometric feature, such as a diagonal line or other suitable geometric feature, the method and apparatus uses pixel information from at least some of the surrounding pixels that are also determined to be the in geometric feature. This may be performed on a group of pixel basis and may include, for example, utilizing a block or kernel of pixels and a moving window of blocks of pixels to utilize the plurality of surrounding pixels.Type: GrantFiled: August 29, 2006Date of Patent: May 17, 2011Assignee: ATI Technologies ULCInventors: Jeff X. Wei, Marinko Karanovic
-
Patent number: 7580157Abstract: A method and circuit for generating an M-bit digital dither signal with a substantially uniform probability density function and high-pass spectrum are disclosed. The circuit includes a linear feedback shift register (LFSR) with N storage elements where N>M, and a high-pass filter. The method involves sampling at least M storage elements of the LFSR with each clock cycle to form an M-bit LFSR output and high-pass filtering and the M-bit LFSR output to provide the M-bit dither signal.Type: GrantFiled: August 30, 2006Date of Patent: August 25, 2009Assignee: ATI Technologies ULCInventor: Jeff X. Wei
-
Publication number: 20090167778Abstract: A mipmap generator generates pairs of mipmaps that are each of a lower resolution that its respective source image. A single-pass, gradient-based motion vector generator generates an image motion vector map having values that represent the motion trajectories for pixels in the first and second source images. An image interpolator generates an interpolated image based on the source images and the image motion vector map. A motion detector generates a motion factor map based on a pair of mipmaps from those generated by the mipmap generator that represents a detected degree of motion between the first and second source images. The blending module generates a blended, upconverted new image using the motion factor map, the interpolated image and one of the first and second motion maps.Type: ApplicationFiled: December 28, 2007Publication date: July 2, 2009Applicant: ATI Technologies ULCInventor: Jeff X. Wei
-
Publication number: 20090087120Abstract: An upscaler is disclosed that upscales each of a maximum value map, a minimum value map and an average value map to a destination resolution. A blending module generates a detail-enhanced upscaled image of the source image having the destination resolution by blending corresponding pixel values from an upscaled image of the source image with at least one of: the upscaled maximum value map and the upscaled minimum value map. The blending may be based on the strength of detected edges in the source image and further based on a comparison of each pixel value in the upscaled image with a corresponding pixel value in an average value map. A source image characteristic calculator may generate the maximum value map, the minimum value map and the average value map based on the intensity values of a source image.Type: ApplicationFiled: September 28, 2007Publication date: April 2, 2009Applicant: ATI Technologies ULCInventor: Jeff X. Wei
-
Publication number: 20090086093Abstract: A frame construction engine constructs a first frame of deinterlaced video and a second frame of deinterlaced video based on a first field of interlaced video and based on a second field of interlaced video, independent of any other fields of interlaced video. The frame construction engine constructs the first frame of deinterlaced video by assigning pixel values from the first field of interlaced video to corresponding pixel locations in the first frame. The frame construction engine constructs the second frame of deinterlaced video by assigning pixel values from the second field of interlaced video to corresponding pixel locations in the second frame. Missing pixel locations in each of the frames are selected from a corresponding field of spatially interpolated pixel values or from an opposite field of deinterlaced video.Type: ApplicationFiled: September 28, 2007Publication date: April 2, 2009Applicant: ATI Technologies ULCInventor: Jeff X. Wei
-
Publication number: 20080056617Abstract: A method and apparatus for interpolating image information obtains pixel information for a plurality of pixels surrounding a location of a pixel to be interpolated, whether the pixel is a missing pixel or an existing pixel whose color or intensity information is to be changed, and applies a gradient square tensor operation on a plurality of surrounding pixels to determine if the pixel to be interpolated is part of a geometric feature. If it is determined that the interpolated pixel is part of a geometric feature, such as a diagonal line or other suitable geometric feature, the method and apparatus uses pixel information from at least some of the surrounding pixels that are also determined to be the in geometric feature. This may be performed on a group of pixel basis and may include, for example, utilizing a block or kernel of pixels and a moving window of blocks of pixels to utilize the plurality of surrounding pixels.Type: ApplicationFiled: August 29, 2006Publication date: March 6, 2008Applicant: ATI Technologies Inc.Inventors: Jeff X. Wei, Marinko Karanovic