Patents by Inventor Jefferi J. Covington

Jefferi J. Covington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846471
    Abstract: Disclosed is a shell-and-tube heat exchanger assembly, having: a first tubesheet configured for being secured to a shell of the shell-and-tube heat exchanger assembly, the first tubesheet including: a first section and a second section; the second section configured to be secured to a first shell end of the shell; and the first section including a plurality of holes configured to support a respective plurality of aluminum tubes extending through the shell, wherein the first section is configured to limit a galvanic response of the plurality of aluminum tubes when exposed to a chiller water.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: December 19, 2023
    Assignee: CARRIER CORPORATION
    Inventors: Luis Felipe Avila, Jefferi J. Covington, Tobias H. Sienel, Brian D. Videto
  • Publication number: 20220187024
    Abstract: Disclosed is a shell-and-tube heat exchanger assembly, having: a first tubesheet configured for being secured to a shell of the shell-and-tube heat exchanger assembly, the first tubesheet including: a first section and a second section; the second section configured to be secured to a first shell end of the shell; and the first section including a plurality of holes configured to support a respective plurality of aluminum tubes extending through the shell, wherein the first section is configured to limit a galvanic response of the plurality of aluminum tubes when exposed to a chiller water.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 16, 2022
    Inventors: Luis Felipe Avila, Jefferi J. Covington, Tobias H. Sienel, Brian D. Videto
  • Patent number: 11274887
    Abstract: A heat exchanger is disclosed. The heat exchanger includes a hollow tube including a first aluminum alloy extending along an axis from a tube inlet to tube outlet. A first plurality of fins including a second aluminum alloy extends outwardly from an outer surface of the tube. A second plurality of fins including a third aluminum alloy extends outwardly from the outer surface of the tube, interspersed along the axis with the fins including the second aluminum alloy. The third aluminum alloy is less noble than each of the first aluminum alloy and the second aluminum alloy, and includes an alloying element selected from tin, indium, gallium, or combinations thereof. A first fluid flow path is disposed through hollow tube from the tube inlet to the tube outlet. A second fluid flow path is disposed across an outer surface of the hollow tube through spaces between adjacent fins.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 15, 2022
    Assignee: CARRIER CORPORATION
    Inventors: Matthew Patterson, Anais Espinal, Aaron T. Nardi, Mark R. Jaworowski, Catherine Thibaud, Tobias H. Slenel, Luis Felipe Avila, Jefferi J. Covington
  • Publication number: 20220065562
    Abstract: Disclosed is a method of in-situ application of a conformal surface treatment to an internal surface of a heat exchanger of a chiller comprising providing a surface treatment solution to an inlet of the heat exchanger of the chiller, urging a flow of the surface treatment solution along a flowpath from the inlet past a plurality of heat transfer tubes to an outlet of the heat exchanger of the chiller, collecting the surface treatment solution, forming the conformal surface treatment along an internal surface of the first manifold, the plurality of heat transfer tubes, the second manifold, and a plurality of interconnections therebetween, stopping the flow of the surface treatment solution, and removing the surface treatment solution from the chiller.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Matthew Patterson, Kerry Allahar, Jefferi J. Covington, Valerie Lisi
  • Publication number: 20220065563
    Abstract: Disclosed is a method of anodizing the interior surface of a heat transfer tube comprising placing a plurality of contact electrodes in electrical communication with, and along, an exterior surface of the heat transfer tube, inserting a counter electrode into an interior space of the heat transfer tube, providing an electrolytic solution to the interior space of the heat transfer tube, passing an electric current between the plurality of contact electrodes and the counter electrode through the electrolytic solution, forming an oxidation layer along the interior surface of the heat transfer tube, wherein the oxidation layer has an oxidation layer thickness that decreases along a length of the heat transfer tube, stopping the passage of the electric current, removing the electrolytic solution, and applying a sealing solution to a surface of the oxidation layer to form a sealed oxidation layer along the interior surface of the heat transfer tube.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 3, 2022
    Inventors: Kerry Allahar, Jefferi J. Covington, Matthew Patterson
  • Publication number: 20210348858
    Abstract: A heat exchanger is disclosed. The heat exchanger includes a hollow tube including a first aluminum alloy extending along an axis from a tube inlet to tube outlet. A first plurality of fins including a second aluminum alloy extends outwardly from an outer surface of the tube. A second plurality of fins including a third aluminum alloy extends outwardly from the outer surface of the tube, interspersed along the axis with the fins including the second aluminum alloy. The third aluminum alloy is less noble than each of the first aluminum alloy and the second aluminum alloy, and includes an alloying element selected from tin, indium, gallium, or combinations thereof. A first fluid flow path is disposed through hollow tube from the tube inlet to the tube outlet. A second fluid flow path is disposed across an outer surface of the hollow tube through spaces between adjacent fins.
    Type: Application
    Filed: December 19, 2019
    Publication date: November 11, 2021
    Inventors: Matthew Patterson, Anais Espinal, Aaron T. Nardl, Mark R. Jaworowski, Catherine Thibaud, Tobias H. Slenel, Luis Felipe Avila, Jefferi J. Covington
  • Publication number: 20210348859
    Abstract: A heat exchanger is disclosed. The heat exchanger includes a hollow tube extending from a tube inlet to a tube outlet. The hollow tube includes a wall that includes a core of a first aluminum alloy, and a cladding over the core of a second aluminum alloy. The second aluminum alloy is less noble than the first aluminum alloy and includes an alloying element selected from tin, indium, or gallium, or combinations thereof. A first fluid flow path is disposed along an inner surface of the wall from the tube inlet to the tube outlet, and a second fluid flow path is disposed across an outer surface of the wall.
    Type: Application
    Filed: December 19, 2019
    Publication date: November 11, 2021
    Inventors: Mary Teresa Lombardo, Ruoshuang Huang, Jefferi J. Covington, Matthew Patterson, Anais Espinal, Mark R. Jaworowski, Aaron T. Nardi, Catherine Thibaud, Tobias H. Sienel, Luis Felipe Avila
  • Publication number: 20210302112
    Abstract: A heat exchanger is disclosed. The heat exchanger includes a hollow tube extending from a tube inlet to a tube outlet. The hollow tube includes a wall inner surface comprising a copper alloy or a first aluminum alloy. A first fluid flow path is disposed along the wall inner surface from the tube inlet to the tube outlet. A turbulator is disposed within the hollow tube along the first fluid flow path, and the turbulator comprises a second aluminum alloy that is less noble than the copper or first aluminum alloy. A second fluid flow path is disposed across an outer surface of the wall.
    Type: Application
    Filed: December 19, 2019
    Publication date: September 30, 2021
    Inventors: Matthew Patterson, Anais Espinal, Mark R. Jaworowski, Aaron T. Nardi, Catherine Thibaud, Tobias H. Sienel, Luis Felipe Avila, Jefferi J. Covington
  • Patent number: 9746067
    Abstract: There is a gear set. The gear set has a) a first gear having a first surface and b) an intermeshing second gear having a second surface. The first and second surfaces each, independently, have an isotropic arithmetic mean roughness, Ra, of about 0.0762 micrometers/3 microinches or less and are lubricated. There is also a method for increasing the contact surface-fatigue life of a gear set.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: August 29, 2017
    Assignee: United Technologies Corporation
    Inventors: Clark V. Cooper, Sonia Tulyani, Edward J. Karedes, Jefferi J. Covington, Alexander Staroselsky, Harsh Vinayak
  • Publication number: 20170045299
    Abstract: A heat exchanger is provided including a first manifold and a second manifold. The first manifold and the second manifold are separated from one another. A plurality of heat exchanger tubes is arranged in a spaced parallel relationship. The heat exchanger tubes fluidly couple the first manifold and the second manifold. A plurality of fins is attached to the plurality of heat exchanger tubes such that a first end of each fin is spaced apart from the first manifold by a first distance.
    Type: Application
    Filed: April 29, 2015
    Publication date: February 16, 2017
    Inventors: Shunjun Song, James S. Laub, Jefferi J. Covington
  • Publication number: 20140366573
    Abstract: A heat exchange tube for a refrigerant-flooded evaporator includes a tube body and a plurality of channels for conveying a cooling medium therethrough located in the tube body. One or more outer wall textural elements are included at the outer wall of the tube body to improve thermal energy transfer between the cooling medium and a volume of boiling refrigerant. A method of forming a heat exchange tube for a refrigerant-flooded evaporator includes urging a billet into an extrusion section and forming the billet into two tube halves including an outer wall and an inner wall having a plurality of channel halves. A textural element is formed at one or more of the outer wall and the inner wall via one or more rotating dies, and the two tube halves are joined to form the heat exchange tube.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 18, 2014
    Inventors: Patrick Louis Clavette, Satyam Bendapudi, Jefferi J. Covington
  • Publication number: 20140231056
    Abstract: A heat exchanger includes a plurality of tubes conveying a first fluid flow therethrough disposed substantially transverse to a direction of a second fluid flow through the heat exchanger and arranged in a plurality of tube rows extending substantially along the direction of the second fluid flow. The heat exchanger further includes a web sheet having a plurality of webs and a plurality of tube recesses disposed between the webs of the plurality of webs. Each tube of the plurality of tubes is secured to a tube recess of the plurality of tube recesses. Forming a heat exchanger includes forming a web sheet having a plurality of webs and a plurality of tube recesses located between the webs. A plurality of tubes are formed and configured to convey a first fluid flow therethrough. The plurality of tubes are inserted into the plurality of tube recesses.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 21, 2014
    Applicant: Carrier Corporation
    Inventors: Jefferi J. Covington, Abbas A. Alahyari, John H. Whiton, Joseph B. Wysocki, John P. Wesson, Daniel V. Viens, Steven Lozyniak
  • Patent number: 8692106
    Abstract: The invention is a bulk-processed thermoelectric material and a method for fabrication. The material measures at least 30 microns in each dimension and has a figure of merit (ZT) greater than 1.0 at any temperature less than 200° C. The material comprises at least two constituents; a host phase and a dispersed second phase. The host phase is a semiconductor or semimetal and the dispersed phase of the bulk-processed material is comprised of a plurality of inclusions. The material has a substantially coherent interface between the host phase and the dispersed phase in at least one crystallographic direction.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 8, 2014
    Assignee: Carrier Corporation
    Inventors: Rhonda R. Willigan, Susanne M. Opalka, Joseph V. Mantese, Slade R. Culp, Jefferi J. Covington
  • Publication number: 20110248210
    Abstract: The invention is a bulk-processed thermoelectric material and a method for fabrication. The material measures at least 30 microns in each dimension and has a figure of merit (ZT) greater than 1.0 at any temperature less than 200° C. The material comprises at least two constituents; a host phase and a dispersed second phase. The host phase is a semiconductor or semimetal and the dispersed phase of the bulk-processed material is comprised of a plurality of inclusions. The material has a substantially coherent interface between the host phase and the dispersed phase in at least one crystallographic direction.
    Type: Application
    Filed: December 7, 2009
    Publication date: October 13, 2011
    Applicant: Carrier Corporation
    Inventors: Rhonda R. Willigan, Susanne M. Opalka, Joseph V. Mantese, Slade R. Culp, Jefferi J. Covington
  • Publication number: 20090107275
    Abstract: There is a gear set. The gear set has a) a first gear having a first surface and b) an intermeshing second gear having a second surface. The first and second surfaces each, independently, have an isotropic arithmetic mean roughness, Ra, of about 3 microinches or less and are lubricated. There is also a method for increasing the contact surface-fatigue life of a gear set.
    Type: Application
    Filed: December 2, 2005
    Publication date: April 30, 2009
    Inventors: Clark V. Cooper, Sonia Tulyani, Edward J. Karedes, Jefferi J. Covington, Alexander Staroselsky, Harsh Vinayak