Patents by Inventor Jefferson L. Wagener

Jefferson L. Wagener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10567856
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 18, 2020
    Assignee: Molex, LLC
    Inventor: Jefferson L. Wagener
  • Patent number: 10495819
    Abstract: An optical device includes an optical port array, an optical arrangement, a dispersion element, a focusing element and a programmable optical phase modulator. The optical port array has at least one optical input port for receiving an optical beam and a plurality of optical output ports. The optical arrangement allows optical coupling between the input port and each of the output ports and prevents optical coupling between any one of the plurality of optical output ports and any other of the plurality of optical output ports. The dispersion element receives the optical beam from the input port after traversing the optical arrangement and spatially separates the optical beam into a plurality of wavelength components. The focusing element focuses the plurality of wavelength components. The programmable optical phase modulator receives the focused plurality of wavelength components and steers them to a selected one of the optical outputs.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: December 3, 2019
    Assignee: Molex, LLC
    Inventors: Jefferson L. Wagener, Takaaki Ishikawa, Carl Edmund Soccolich
  • Publication number: 20190320248
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Application
    Filed: October 16, 2018
    Publication date: October 17, 2019
    Inventor: JEFFERSON L. WAGENER
  • Patent number: 10228517
    Abstract: An optical device includes an optical port array, an optical arrangement, a dispersion element, a focusing element and a programmable optical phase modulator. The optical port array has at least one optical input port for receiving an optical beam and a plurality of optical output ports. The optical arrangement allows optical coupling between the input port and each of the output ports and prevents optical coupling between any one of the plurality of optical output ports and any other of the plurality of optical output ports. The dispersion element receives the optical beam from the input port after traversing the optical arrangement and spatially separates the optical beam into a plurality of wavelength components. The focusing element focuses the plurality of wavelength components. The programmable optical phase modulator receives the focused plurality of wavelength components and steers them to a selected one of the optical outputs.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: March 12, 2019
    Assignee: Nistica, Inc.
    Inventors: Jefferson L. Wagener, Carl Edmund Soccolich, Takaaki Ishikawa
  • Publication number: 20190004250
    Abstract: An optical device includes an optical port array, an optical arrangement, a dispersion element, a focusing element and a programmable optical phase modulator. The optical port array has at least one optical input port for receiving an optical beam and a plurality of optical output ports. The optical arrangement allows optical coupling between the input port and each of the output ports and prevents optical coupling between any one of the plurality of optical output ports and any other of the plurality of optical output ports. The dispersion element receives the optical beam from the input port after traversing the optical arrangement and spatially separates the optical beam into a plurality of wavelength components. The focusing element focuses the plurality of wavelength components. The programmable optical phase modulator receives the focused plurality of wavelength components and steers them to a selected one of the optical outputs.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: Jefferson L. Wagener, Takaaki Ishikawa, Carl Edmund Soccolich
  • Patent number: 10129615
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 13, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 10104456
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: October 16, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 10094981
    Abstract: An optical switching arrangement includes a plurality of input and output waveguides. Each of the input waveguides has a first plurality of 1×2 optical switches associated therewith and extending therealong. Each of the output waveguides has a second plurality of 1×2 optical switches associated therewith and extending therealong. Each of the first and second plurality of optical switches is selectively switchable between a through-state and a cross-state. The input and output waveguides are arranged such that optical losses arising for any wavelength of light only depend on a length of segments of the input and output waveguides located between adjacent ones of the 1×2 optical switches. Each of the first plurality of optical switches associated with each of the input waveguides is optically coupled to one of the second plurality of optical switches in a different one of the output waveguides when both optical switches are in the cross-state.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: October 9, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Publication number: 20180203190
    Abstract: An optical switching arrangement includes a plurality of input and output waveguides. Each of the input waveguides has a first plurality of 1×2 optical switches associated therewith and extending therealong. Each of the output waveguides has a second plurality of 1×2 optical switches associated therewith and extending therealong. Each of the first and second plurality of optical switches is selectively switchable between a through-state and a cross-state. The input and output waveguides are arranged such that optical losses arising for any wavelength of light only depend on a length of segments of the input and output waveguides located between adjacent ones of the 1×2 optical switches. Each of the first plurality of optical switches associated with each of the input waveguides is optically coupled to one of the second plurality of optical switches in a different one of the output waveguides when both optical switches are in the cross-state.
    Type: Application
    Filed: March 14, 2018
    Publication date: July 19, 2018
    Inventor: JEFFERSON L. WAGENER
  • Patent number: 9954636
    Abstract: A node that is colorless, directionless and contentionless includes an add/drop terminal having an add wavelength selective switch (WSS) and a drop WSS. The add and drop WSSs are each configured to selectively direct any subset of the wavelength components received at any of its inputs to a different one of its optical outputs, provided that the wavelength components of optical beams received by any two of the inputs cannot be simultaneously directed to a common one of the outputs. A plurality of transponder ports are each optically coupled to a different output of the drop WSS and a different input of the add WSS.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: April 24, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9946031
    Abstract: An optical switching arrangement includes a plurality of input and output waveguides. Each of the input waveguides has a first plurality of 1×2 optical switches associated therewith and extending therealong. Each of the output waveguides has a second plurality of 1×2 optical switches associated therewith and extending therealong. Each of the first and second plurality of optical switches is selectively switchable between a through-state and a cross-state. The input and output waveguides are arranged such that optical losses arising for any wavelength of light only depend on a length of segments of the input and output waveguides located between adjacent ones of the 1×2 optical switches. Each of the first plurality of optical switches associated with each of the input waveguides is optically coupled to one of the second plurality of optical switches in a different one of the output waveguides when both optical switches are in the cross-state.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 17, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9893833
    Abstract: An optical device includes an optical port array having first and second optical inputs for receiving optical beams and a first plurality of optical outputs associated with switching functionality and a second plurality of optical outputs associated with channel monitoring functionality. A dispersion element receives the optical beam from an input and spatially separates the beam into a plurality of wavelength components. The focusing element focuses the wavelength components. The optical path conversion system receives the plurality of wavelength components and selectively directs each one to a prescribed one of the optical ports. The photodetectors are each associated with one of the optical outputs in the second plurality of optical outputs and receive a wavelength component therefrom. The controller causes the optical path conversion system to simultaneously direct each of the wavelength components to a different one of the optical outputs of the second plurality of optical outputs.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: February 13, 2018
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9881567
    Abstract: A method is provided for reducing flicker arising in pixels along an axis of a liquid-crystal based array such as a LCoS array. The pixels along the axis exhibit a common gray scale level. In accordance with the method, a plurality of digital data command sequences are selected that each drive a pixel at the common gray scale level. A first of the plurality of digital data command sequences is applied to a first pixel along the axis. A second of the plurality of digital data command sequences is applied to a second pixel along the axis. The second pixel is adjacent to the first pixel. The first and second digital command sequences give rise to voltages being applied to the two pixels which have frequency components that are opposite in phase and equal in magnitude.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: January 30, 2018
    Assignee: NISTICA, INC.
    Inventor: Jefferson L. Wagener
  • Publication number: 20170363812
    Abstract: An optical switching arrangement includes a plurality of input and output waveguides. Each of the input waveguides has a first plurality of 1×2 optical switches associated therewith and extending therealong. Each of the output waveguides has a second plurality of 1×2 optical switches associated therewith and extending therealong. Each of the first and second plurality of optical switches is selectively switchable between a through-state and a cross-state. The input and output waveguides are arranged such that optical losses arising for any wavelength of light only depend on a length of segments of the input and output waveguides located between adjacent ones of the 1×2 optical switches. Each of the first plurality of optical switches associated with each of the input waveguides is optically coupled to one of the second plurality of optical switches in a different one of the output waveguides when both optical switches are in the cross-state.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventor: JEFFERSON L. WAGENER
  • Publication number: 20170311058
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Application
    Filed: May 8, 2017
    Publication date: October 26, 2017
    Inventor: JEFFERSON L. WAGENER
  • Patent number: 9778421
    Abstract: An optical switching arrangement includes a plurality of input and output waveguides. Each of the input waveguides has a first plurality of 1×2 optical switches associated therewith and extending therealong. Each of the output waveguides has a second plurality of 1×2 optical switches associated therewith and extending therealong. Each of the first and second plurality of optical switches is selectively switchable between a through-state and a cross-state. The input and output waveguides are arranged such that optical losses arising for any wavelength of light only depend on a length of segments of the input and output waveguides located between adjacent ones of the 1×2 optical switches. Each of the first plurality of optical switches associated with each of the input waveguides is optically coupled to one of the second plurality of optical switches in a different one of the output waveguides when both optical switches are in the cross-state.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: October 3, 2017
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9755738
    Abstract: An optical device includes an optical port array having first and second optical inputs for receiving optical beams and a first plurality of optical outputs associated with switching functionality and a second plurality of optical outputs associated with channel monitoring functionality. A dispersion element receives the optical beam from an input and spatially separates the beam into a plurality of wavelength components. The focusing element focuses the wavelength components. The optical path conversion system receives the plurality of wavelength components and selectively directs each one to a prescribed one of the optical ports. The photodetectors are each associated with one of the optical outputs in the second plurality of optical outputs and receive a wavelength component therefrom. The controller causes the optical path conversion system to simultaneously direct each of the wavelength components to a different one of the optical outputs of the second plurality of optical outputs.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: September 5, 2017
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9680570
    Abstract: A method of monitoring at least one optical wavelength component of a WDM optical signal being routed through a wavelength selective switch (WSS) includes directing an optical wavelength component from a given input port of the WSS to a selected output port with a selected amount of attenuation. A rejected portion of the optical wavelength component giving rise to the selected amount of attenuation is directed to an optical monitor associated with another output port of the WSS. A power level of the optical wavelength component is determined by pre-calibrating a proportionality between the power level of the wavelength component and the power level of the rejected portion that is directed to the optical monitor.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: June 13, 2017
    Assignee: Nistica, Inc.
    Inventors: Jefferson L. Wagener, Bradford Smith
  • Patent number: 9661406
    Abstract: An optical device includes a plurality of optical input ports, a plurality of optical output ports, a wavelength dispersion arrangement and at least one optical beam steering arrangement. The plurality of optical input ports is configured to receive optical beams each having a plurality of wavelength components. The wavelength dispersion arrangement receives the optical beams and spatially separates each of the optical beams into a plurality of wavelengths components. The optical beam steering arrangement has a first region onto which the spatially separated wavelength components are directed and a second region onto which any subset of the plurality of wavelength components of each of the optical beams is selectively directed after the wavelength components in each of the subsets are spatially recombined with one another. The optical beam steering arrangement selectively directs each of subset of the plurality of wavelength components to a different one of the optical output ports.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: May 23, 2017
    Assignee: Nistica, Inc.
    Inventor: Jefferson L. Wagener
  • Patent number: 9632391
    Abstract: An optical device in which crosstalk due to scattering is reduced includes an optical port array having at least one optical input for receiving an optical beam and at least one optical output. The input and outputs extend along a common axis. A dispersion element receives the optical beam from the optical input and spatially separates the optical beam into a plurality of wavelength components. A focusing element focuses the plurality of wavelength components and a programmable optical phase modulator receives the focused plurality of wavelength components. The modulator is configured to steer the wavelength components to a selected one of the optical outputs. The programmable optical phase modulator is oriented with respect to the optical port array so that an axis along which the optical beam is steered is non-coincident with the common axis along which the input and outputs extend.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 25, 2017
    Assignee: Nistica, Inc.
    Inventors: Jefferson L. Wagener, Takaaki Ishikawa