Patents by Inventor Jeffery A. Broderick

Jeffery A. Broderick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11266341
    Abstract: In one example, a system for measuring body movement in a movement disorder disease is provided. The system may comprise at least one processor and a memory storing processor executable codes, which, when implemented by the at least one processor, cause the system to perform operations comprising, at least receiving a video including a sequence of images and detecting at least one object of interest in one or more of the images. Feature reference points of the at least one object of interest are located, and a virtual movement-detection framework is generated in one or more of the images. The operations may include detecting, over the sequence of images, at least one singular or reciprocating movement of the feature reference point relative to the virtual movement-detection framework and generating a virtual path tracking a path of the at least one detected singular or reciprocating movement of the feature reference point.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: March 8, 2022
    Assignee: Beneufit, Inc.
    Inventors: Jeffery Broderick, Douglas Van Blaricom, Jerome Lisk, Zenan Li, Sukhad Anand
  • Publication number: 20220007993
    Abstract: In one example, a system for measuring body movement in a movement disorder disease is provided. The system may comprise at least one processor and a memory storing processor executable codes, which, when implemented by the at least one processor, cause the system to perform operations comprising, at least receiving a video including a sequence of images and detecting at least one object of interest in one or more of the images. Feature reference points of the at least one object of interest are located, and a virtual movement-detection framework is generated in one or more of the images. The operations may include detecting, over the sequence of images, at least one singular or reciprocating movement of the feature reference point relative to the virtual movement-detection framework and generating a virtual path tracking a path of the at least one detected singular or reciprocating movement of the feature reference point.
    Type: Application
    Filed: May 7, 2021
    Publication date: January 13, 2022
    Inventors: Jeffery Broderick, Douglas Van Blaricom, Jerome Lisk, Zenan Li, Sukhad Anand
  • Patent number: 10992098
    Abstract: A waveguide gas laser having a laser resonator cavity of a variable length is subjected to cyclical varying of the length of the cavity during generation of a laser beam a length variation amount sufficient to force a laser beam generated in the resonator cavity though a substantially complete optical longitudinal cavity mode at a rate operable to smooth at least one laser beam parameter variation. In this manner variation in the laser beam parameter is averaged by moving through at least a portion of an optical longitudinal cavity mode.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: April 27, 2021
    Assignee: Epilog Corporation
    Inventors: Jeffery A Broderick, Patrick B Kohl
  • Publication number: 20200185874
    Abstract: A waveguide gas laser having a laser resonator cavity of a variable length is subjected to cyclical varying of the length of the cavity during generation of a laser beam a length variation amount sufficient to force a laser beam generated in the resonator cavity though a substantially complete optical longitudinal cavity mode at a rate operable to smooth at least one laser beam parameter variation. In this manner variation in the laser beam parameter is averaged by moving through at least a portion of an optical longitudinal cavity mode.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 11, 2020
    Inventors: Jeffery A Broderick, Patrick B Kohl
  • Publication number: 20190142328
    Abstract: In one example, a system for measuring body movement is provided. The system may comprise at least one processor and a memory storing processor executable codes, which, when implemented by the at least one processor, cause the system to perform operations comprising, at least receiving a video including a sequence of images and detecting at least one object of interest in one or more of the images. Feature reference points of the at least one object of interest are located, and a virtual movement-detection framework is generated in one or more of the images. The operations may include detecting, over the sequence of images, at least one singular or reciprocating movement of the feature reference point relative to the virtual movement-detection framework and generating a virtual path tracking a path of the at least one detected singular or reciprocating movement of the feature reference point.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Inventors: Jeffery Broderick, Douglas Van Blaricom, Jerome Lisk, Zenan Li, Sukhad Anand
  • Publication number: 20190110736
    Abstract: In one example, a system for measuring body movement in a movement disorder disease is provided. The system may comprise at least one processor and a memory storing processor executable codes, which, when implemented by the at least one processor, cause the system to perform operations comprising, at least receiving a video including a sequence of images and detecting at least one object of interest in one or more of the images. Feature reference points of the at least one object of interest are located, and a virtual movement-detection framework is generated in one or more of the images. The operations may include detecting, over the sequence of images, at least one singular or reciprocating movement of the feature reference point relative to the virtual movement-detection framework and generating a virtual path tracking a path of the at least one detected singular or reciprocating movement of the feature reference point.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 18, 2019
    Inventors: Jeffery Broderick, Douglas Van Blaricom, Jerome Lisk, Zenan Li, Sukhad Anand
  • Patent number: 7894500
    Abstract: An RF-excited waveguide laser module comprises a first electrode having a first elongate surface defining in part a waveguide laser channel extending along an optical axis, the first elongate surface having a substantially linear cross-section normal to the optical axis. A second electrode has a second elongate surface defining in part the waveguide laser channel extending along the optical axis. The second elongate surface has a non-linear cross-section normal to the optical axis. A dielectric insert may be provided between the electrodes defining in part the waveguide laser channel. A lengthwise gap may extend essentially an entire length of the waveguide laser channel between one of the first and second electrodes and the dielectric insert. The gap provides fluid communication between the waveguide laser channel and a volume outside the waveguide laser channel.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: February 22, 2011
    Assignee: Epilog Corporation
    Inventors: Jeffery A Broderick, John H Doran, Steven F Garnier, Chad A Mitchiner
  • Patent number: 7570683
    Abstract: An RF-excited waveguide laser module comprises a first electrode having a first elongate surface defining in part a waveguide laser channel extending along an optical axis, the first elongate surface having a substantially linear cross-section normal to the optical axis. A second electrode has a second elongate surface defining in part the waveguide laser channel extending along the optical axis. The second elongate surface has a non-linear cross-section normal to the optical axis. A dielectric insert may be provided between the electrodes defining in part the waveguide laser channel. A lengthwise gap may extend essentially an entire length of the waveguide laser channel between one of the first and second electrodes and the dielectric insert. The gap provides fluid communication between the waveguide laser channel and a volume outside the waveguide laser channel.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 4, 2009
    Assignee: Epilog Corporation
    Inventors: Jeffery A Broderick, John H Doran, Steven F Garnier, Chad A Mitchiner
  • Patent number: 6614826
    Abstract: A laser system and method having an output laser beam uses an gain medium with one or more output beam transverse profile tailoring (OBTPT) longitudinal strips to tailor the transverse profile of the output laser beam to a desirable shape such as having a symmetrical profile transverse to the direction of propagation of the output laser beam. The laser system has two reflector systems on opposite ends in the long z-axis dimension of the gain medium to form a resonator that outputs the output laser beam following the same long z-axis dimension. In some embodiments the gain medium has a narrow y-axis dimension and a wide x-axis dimension. In these embodiments the OBTPT longitudinal strips have lengths running the long z-axis dimension, widths running the wide x-axis dimension and thicknesses running the narrow y-axis dimension of the gain medium. The widths of the OBTPT longitudinal strips are generally chosen with respect to coupling width of the output laser beam.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: September 2, 2003
    Assignee: Synrad, Inc.
    Inventors: Jason W. Bethel, Eugene F. Yelden, Jeffery A. Broderick
  • Patent number: 6603794
    Abstract: A system and method for laser beam coupling between waveguide optics uses extension members to reduce power losses in a laser beam traveling within a resonator cavity of the laser beam. In some embodiments, the extension members are made of electrically conducting material and are spaced from longitudinal ends of electrodes by electrically insulating material. The electrically insulating material is sized to prevent electrical discharge from occurring between the electrode and the extension member adjacent thereto. In other embodiments, the extension members are fashioned from a lasing medium such as from a solid-state crystal lasing medium.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: August 5, 2003
    Assignee: Synrad, Inc.
    Inventors: Jason W. Bethel, Eugene F. Yelden, Alex B. Dexter, Jeffery A. Broderick
  • Publication number: 20030048826
    Abstract: A system and method for laser beam coupling between waveguide optics uses extension members to reduce power losses in a laser beam traveling within a resonator cavity of the laser beam. In some embodiments, the extension members are made of electrically conducting material and are spaced from longitudinal ends of electrodes by electrically insulating material. The electrically insulating material is sized to prevent electrical discharge from occurring between the electrode and the extension member adjacent thereto. In other embodiments, the extension members are fashioned from a lasing medium such as from a solid-state crystal lasing medium.
    Type: Application
    Filed: September 5, 2001
    Publication date: March 13, 2003
    Inventors: Jason W. Bethel, Eugene F. Yelden, Alex B. Dexter, Jeffery A. Broderick
  • Publication number: 20010033588
    Abstract: A laser system and method for beam enhancement utilizes shaped electrodes or one or more shaped lasing media, including crystal media, to prescribe the operational transverse modes of a laser beam produced by the laser. The electrodes and shaped lasing media are shaped with respect to the transverse mode or modes to be selected for operational use. In some embodiments shaping is done according to a desired mode so that the desired mode has the highest power level of any of the modes present in the laser beam during operation of the laser. In some embodiments, the electrodes or lasing media are so shaped that the total power of the laser beam fluctuates below plus and minus 10% of an average total power level. Some embodiments utilize folded resonators. Other embodiments utilize other resonators including resonators having multiple discharge sections and are not folded.
    Type: Application
    Filed: January 18, 2001
    Publication date: October 25, 2001
    Inventors: Jeffery A. Broderick, Benjamin K. Jones, Jason W. Bethel, Eugene F. Yelden
  • Patent number: 6198759
    Abstract: A laser system and method for beam enhancement utilizes shaped electrodes or one or more shaped lasing media, including crystal media, to prescribe the operational transverse modes of the laser. The electrodes and shaped lasing media are shaped with respect to the transverse mode or modes to be selected for operational use. In some embodiments shaping is done according to the selected transverse modes for operation so that at least a designated percentage of the total operational power of the beam is made up of the selected transverse modes. The designated percentage of total operational power of the selected transverse modes can be 90% of the total power of the beam, but in other more relaxed cases can be 85% and in other more stringent cases are 95% of the beam. In some embodiments, the electrodes or lasing media are so shaped that the theoretical fundamental transverse mode is the only selected transverse operational mode. Some embodiments utilize folded resonators.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: March 6, 2001
    Assignee: Synrad, Inc.
    Inventors: Jeffery A. Broderick, Benjamin K. Jones, Jason W. Bethel, Eugene F. Yelden
  • Patent number: 6198758
    Abstract: A laser with a heat transfer system and method of making the same using electrodes. The heat transfer system draws heat from the electrodes which have internal electrode surfaces adjacent to a lasing medium of the laser. Cooling of the electrodes helps to maintain proper operating temperature for the lasing medium. The heat transfer system utilizes thermally conductive material positioned between external surfaces of the electrodes and internal surfaces of a housing that contains the electrodes and the lasing medium. Since the thermally conductive material adds capacitance to the laser system, inductance may be added for compensation depending upon the amount of thermally conductive material used.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: March 6, 2001
    Assignee: Synrad, Inc.
    Inventors: Jeffery A. Broderick, Benjamin K. Jones, Jason W. Bethel, Eugene F. Yelden
  • Patent number: 6195379
    Abstract: A laser assembly system and method uses an electrode assembly and flexible housing to reduce manufacturing costs and complexity. The flexible housing also helps to insure uniform contact with the housing and electrically insulating material between the housing and electrodes. The uniform contact in turn assists in maintaining a uniform electric field in the discharge area of the laser, which affects laser performance, and assists in maintaining efficient cooling of the electrodes and the lasing medium. The electrode assembly is pre-assembled before insertion into the laser housing, which reduces adverse effects of anomalies of housing construction and helps to reduce the complexity and cost of manufacturing of the laser. The electrode assembly includes first and second electrodes that are separated by spacers made out of an electrically insulating material such as ceramic.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: February 27, 2001
    Assignee: Synrad, Inc.
    Inventors: Benjamin K. Jones, Jeffery A. Broderick, Jason W. Bethel, Eugene F. Yelden, Erik R. Stockinger