Patents by Inventor Jeffery James Olsen

Jeffery James Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6747442
    Abstract: The present invention provides an n-phase integrated buck converter. The converter comprises a controller and a plurality of circuits each operably connected to the controller. The controller controls the plurality of circuits to respectively output a plurality of current signals each having an associated phase and generate an output voltage signal. By applying the n phase concept of the invention, the amount of current each phase (i.e., each of the plurality of circuits) has to deliver is reduced. This directly reduces the conduction losses in each phase. Because the current in each phase is lower, a smaller MOSFET in each of the plurality of circuits may be used. The smaller MOSFET is easier to switch. Therefore, the switching losses per phase are also reduced. Reducing these losses will enable the invention to achieve high efficiencies. Integration allows all of the components to become physically closer and capable of being switched faster.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: June 8, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Jeffery James Olsen, Ferdinand Jacob Sluijs
  • Publication number: 20030155898
    Abstract: The present invention provides an n-phase integrated buck converter. The converter comprises a controller and a plurality of circuits each operably connected to the controller. The controller controls the plurality of circuits to respectively output a plurality of current signals each having an associated phase and generate an output voltage signal. By applying the n phase concept of the invention, the amount of current each phase (i.e., each of the plurality of circuits) has to deliver is reduced. This directly reduces the conduction losses in each phase. Because the current in each phase is lower, a smaller MOSFET in each of the plurality of circuits may be used. The smaller MOSFET is easier to switch. Therefore, the switching losses per phase are also reduced. Reducing these losses will enable the invention to achieve high efficiencies. Integration allows all of the components to become physically closer and capable of being switched faster.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Jeffery James Olsen, Ferdinand Jacob Sluijs