Patents by Inventor Jeffery Lachapelle

Jeffery Lachapelle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904303
    Abstract: A method of forming an AFX zeolite in a hydrothermal synthesis that exhibits a silica to alumina (SiO2AI2O3) molar ratio (SAR) that is between 8:1 and 26:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This AFX zeolite also exhibits a Brönsted acidity that is in the range of 1.2 mmol/g to 3.6 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite exhibits about a 100% conversion of NO emissions over the temperature range of 300° C. to 650° C.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: February 20, 2024
    Assignee: Pacific Industrial Development Corporation
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Patent number: 11883804
    Abstract: A method of forming an SSZ-13 zeolite in a hydrothermal synthesis yields an SSZ-13 zeolite that exhibits a silica to alumina (SiO2:Al2O3) molar ratio (SAR) that is less than 16:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This SSZ-13 also exhibits a Brönsted acidity that is in the range of 2.0 mmol/g to 3.4 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite provides for low temperature light-off of the NOx conversion reactions, while maintaining substantial performance at higher temperatures demonstrating hydrothermal stability.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: January 30, 2024
    Assignee: Pacific Industrial Development Corporation
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Patent number: 11635009
    Abstract: A method of making an oxygen storage material (OSM) with developed mesoporosity having a small fraction of pores <10 nm (fresh or aged), and resistance to thermal sintering is provided. This OSM is suitable for use as a catalyst and catalyst support. The method of making this oxygen storage material (OSM) includes the preparation of a solution containing pre-polymerized zirconium oligomers, cerium, rare earth and transition metal salts; the interaction of this solution with a complexing agent that has an affinity towards zirconium; the formation of a zirconium-based precursor; and the co-precipitation of all constituent metal hydroxide with abase.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: April 25, 2023
    Assignee: Pacific Industrial Development Corporation
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Publication number: 20230036486
    Abstract: A method for preparing high nickel lithiated metal oxides that includes selecting one or more nickel precursors; at least one non-corrosive lithium salt; and a plurality of metal oxide or hydroxide precursors. The metal precursors and lithium salts are mixed together to form a mixture comprising: wherein x = 1.0 - 1.1, 0.80 ? y ? 0.90, 0.03 < z ? 0.15, and 0 ? a ? 0.05; M is Co or Fe; and N is Al, Mn, Fe, Ca, Mg, Ti, Cr, Nb, Mo, W, B, or a mixture thereof provided N may be Fe when M is Co. The mixture is subjected to sintering (1st step) in air at ? 750° C. to form a powder. The powder is subjected to a 2nd sintering step in O2 at ? 750° C. to form the high nickel lithiated metal oxides.
    Type: Application
    Filed: July 21, 2022
    Publication date: February 2, 2023
    Inventors: Bing Tan, Yuhao Liao, Andrew Rajewski, Jeffery Lachapelle, Wei Wu
  • Publication number: 20220379284
    Abstract: An apparatus, system, and method for removing impurities from a non-aqueous electrolyte used in an electrochemical cell. The apparatus includes a vessel having one or more chambers with an inlet and an outlet configured to allow the flow of the electrolyte through the one or more chambers; and an inorganic scavenging agent located within the one or more chambers. The inorganic scavenging agent includes one or more types of zeolite particles, at least one type of absorbent filler particles, or a combination of the zeolite and absorbent filler particles. The inorganic scavenging agent absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride (HF) that is present as impurities in the non-aqueous electrolyte.
    Type: Application
    Filed: May 10, 2022
    Publication date: December 1, 2022
    Inventors: Jeffery Lachapelle, David Shepard, Ashwin Sankaran, Wei Wu, Yunkui Li
  • Publication number: 20220153600
    Abstract: A method of continuously forming AEI-type zeolites in a tubular reactor via a hydrothermal synthesis. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), alkali metal ions; water; and optionally zeolite seeds. This gel composition is defined by the molar ratios of SiO2/AI2O3 15:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.2:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 180° C. to about 220° C. for less than 2 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2/AI2O3) that is greater than 14:1.
    Type: Application
    Filed: April 9, 2020
    Publication date: May 19, 2022
    Inventors: Yunkui Li, Wei Wu, De Gao, David Shepard, Jeffery Lachapelle, Geng Zhang
  • Patent number: 11224863
    Abstract: An oxygen storage material (OSM) that exhibits enhanced redox properties, developed mesoporosity, and a resistance to sintering. The oxygen storage material (OSM) has a high oxygen storage capacity (i.e., OSC>1.5 mmol H2/g) and enhanced reducibility (i.e., bimodal TPR-H2 profile with two Tmax in the temperature range from 150° C. to 550° C.). The OSM is suitable for use as a catalyst and a catalyst support. The method of making the oxygen storage material comprises the preparation of a solution containing zirconium, cerium, rare earth and transition metal salts, followed by the co-precipitation of all constituent metal hydroxides with a base.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 18, 2022
    Assignee: Pacific Industrial Development Corporation
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Publication number: 20210403334
    Abstract: A method of forming AEI-type zeolites in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the presence of an FAU zeolite NaY with SAR ?5, a Y zeolite with a SAR ?5, or a combination thereof. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), and alkali metal ions; zeolite seeds; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 18:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.13:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 200° C. for 10 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 15:1.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 30, 2021
    Inventors: Yunkui Li, De Gao, David Shepard, Wei Wu, Jeffery Lachapelle, Geng Zhang
  • Publication number: 20210394165
    Abstract: A method of forming an AFX zeolite in a hydrothermal synthesis that exhibits a silica to alumina (SiO2AI2O3) molar ratio (SAR) that is between 8:1 and 26:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This AFX zeolite also exhibits a Brönsted acidity that is in the range of 1.2 mmol/g to 3.6 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite exhibits about a 100% conversion of NO emissions over the temperature range of 300° C. to 650° C.
    Type: Application
    Filed: November 8, 2019
    Publication date: December 23, 2021
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Publication number: 20210339233
    Abstract: A method of forming an SSZ-13 zeolite in a hydrothermal synthesis yields an SSZ-13 zeolite that exhibits a silica to alumina (SiO2:Al2O3) molar ratio (SAR) that is less than 16:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (?m) to 10 ?m. This SSZ-13 also exhibits a Brönsted acidity that is in the range of 2.0 mmol/g to 3.4 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite provides for low temperature light-off of the NOx conversion reactions, while maintaining substantial performance at higher temperatures demonstrating hydrothermal stability.
    Type: Application
    Filed: October 24, 2019
    Publication date: November 4, 2021
    Inventors: De Gao, Yunkui Li, David Shepard, Jeffery Lachapelle, Wei Wu
  • Publication number: 20210323832
    Abstract: A method of forming an AEI-type zeolite in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the absence of any FAU zeolite Y. A gel composition formed upon using this method includes one or more sources of silica; one or more sources of alumina, one or more organic structure directing agents (OSDA); a source of alkali metal ions; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 16:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.20:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 180° C. for 15 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 8:1.
    Type: Application
    Filed: August 23, 2019
    Publication date: October 21, 2021
    Inventors: Yunkui Li, David Shepard, De Gao, Wei Wu, Jeffery Lachapelle, Geng Zhang
  • Publication number: 20210300778
    Abstract: A nanocrystal-sized cerium-zirconium mixed oxide material includes at least 30% by mass zirconium oxide; between 5% to 55% by mass cerium oxide; and a total of 25% or less by mass of at least one oxide of a rare earth metal selected from the group of lanthanum, neodymium, praseodymium, or yttrium. The nanocrystal-sized cerium-zirconium mixed oxide exhibits hierarchically ordered aggregates having a d50 particle size less than 1.5 ?m and a total pore volume after calcination at a temperature of 600° C. or more that is at least 0.7 cm3/g with a fraction of pores between 2 nm to 10 nm being less than 15%. The nanocrystal-sized cerium-zirconium mixed oxide material is prepared using a co-precipitation method followed by milling the dried and calcined oxide material. The nanocrystal-sized cerium-zirconium mixed oxide material forms a particulate filter that may be used in an exhaust system arising from a gas or diesel engine.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Anatoly Bortun, David Shepard, Jin Cho, Mila Bortun, Yunkui Li, Wei Wu, Jeffery Lachapelle
  • Publication number: 20210071558
    Abstract: A method of making an oxygen storage material (OSM) with developed mesoporosity having a small fraction of pores <10 nm (fresh or aged), and resistance to thermal sintering is provided. This OSM is suitable for use as a catalyst and catalyst support. The method of making this oxygen storage material (OSM) includes the preparation of a solution containing pre-polymerized zirconium oligomers, cerium, rare earth and transition metal salts; the interaction of this solution with a complexing agent that has an affinity towards zirconium; the formation of a zirconium-based precursor; and the co-precipitation of all constituent metal hydroxide with abase.
    Type: Application
    Filed: January 7, 2019
    Publication date: March 11, 2021
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Publication number: 20210069680
    Abstract: An oxygen storage material (OSM) that exhibits enhanced redox properties, developed mesoporosity, and a resistance to sintering. The oxygen storage material (OSM) has a high oxygen storage capacity (i.e., OSC>1.5 mmol H2/g) and enhanced reducibility (i.e., bimodal TPR-H2 profile with two Tmax in the temperature range from 150° C. to 550° C.). The OSM is suitable for use as a catalyst and a catalyst support. The method of making the oxygen storage material comprises the preparation of a solution containing zirconium, cerium, rare earth and transition metal salts, followed by the co-precipitation of all constituent metal hydroxides with a base.
    Type: Application
    Filed: January 7, 2019
    Publication date: March 11, 2021
    Inventors: Anatoly Bortun, Mila Bortun, David Shepard, Yunkui Li, Jin Cho, Wei Wu, Jeffery Lachapelle
  • Patent number: 10882755
    Abstract: Mesoporous, zirconium-based mixed oxides and a method of making the same comprises: injecting a polyvalent metal-containing solution into an electrolyte solution to form a mother liquor; forming a precipitate; aging the precipitate in the mother liquor to form the mixed oxides; washing the mixed oxides with an aqueous medium; drying and collecting the mixed oxides. The pH of the electrolyte solution exceeds the isoelectric point for zirconium-based mixed oxides. The mixed oxides exhibit a single particle size distribution, improved Ce02 reducibility in the presence of Rhodium, a decrease in surface area after calcination (800-1100° C.) that is not more than 55%, and a tetragonal/cubic structure after calcination. After calcination at 1100° C. for 10 hours in air, the mixed oxides exhibit a surface area >25 m2/g, a pore volume >0.20 cm3/g, an average pore size >30 nm, and an average crystallite size between 8-15 nm.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 5, 2021
    Assignee: Pacific Industrial Development Corporation
    Inventors: Anatoly Bortun, David Shepard, Yunkui Li, Wei Wu, Jeffery Lachapelle
  • Patent number: 10702849
    Abstract: An inorganic oxide material doped with nano-rare earth oxide particles that is capable of trapping one or more of NOx or SOx at a temperature that is less than 400° C. The nano-rare earth oxide particles have a particle size that is less than 10 nanometers. The catalyst support can trap at least 0.5% NO2 at a temperature less than 350° C. and/or at least 0.4% SO2 at a temperature less than 325° C. The catalyst support can trap at least 0.5% NO2 and/or at least 0.2% SO2 at a temperature that is less than 250° C. after being aged at 800° C. for 16 hours in a 10% steam environment. The catalyst support exhibits at least a 25% increase in capacity for at least one of NOx or SOx trapping at a temperature that is less than 400° C. when compared to a conventional rare earth doped support in a 10% steam environment.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 7, 2020
    Assignee: Pacific Industrial Development Corporation
    Inventors: David Shepard, Christopher Zyskowski, Jessica Brown, Jeffery Lachapelle, Wei Wu
  • Publication number: 20190381477
    Abstract: An inorganic oxide material doped with nano-rare earth oxide particles that is capable of trapping one or more of NOx or SOx at a temperature that is less than 400° C. The nano-rare earth oxide particles have a particle size that is less than 10 nanometers. The catalyst support can trap at least 0.5% NO2 at a temperature less than 350° C. and/or at least 0.4% SO2 at a temperature less than 325° C. The catalyst support can trap at least 0.5% NO2 and/or at least 0.2% SO2 at a temperature that is less than 250° C. after being aged at 800° C. for 16 hours in a 10% steam environment. The catalyst support exhibits at least a 25% increase in capacity for at least one of NOx or SOx trapping at a temperature that is less than 400° C. when compared to a conventional rare earth doped support in a 10% steam environment.
    Type: Application
    Filed: June 4, 2019
    Publication date: December 19, 2019
    Inventors: David Shepard, Christopher Zyskowski, Jessica Brown, Jeffery Lachapelle, Wei Wu
  • Publication number: 20190336954
    Abstract: A crystalline, core-shell hybrid Chabazite (CHA) material for use as a catalyst has a core with a silicon to aluminum ratio (SAR) that is less than 25 and a shell that at least partially encapsulates the core, the shell having an SAR of about 25 or greater. The crystalline, core-shell hybrid Chabazite is prepared by forming a first chabazite (CHA) material having a silicon to aluminum ratio (SAR) that is less than 25, placing the first CHA material into an aqueous reaction mixture comprising one or more precursors capable of forming a second chabazite (CHA) material having an SAR that is 25 or greater, growing the second CHA material on the surface of the first CHA material, and collecting the core-shell hybrid CHA material.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Inventors: Wei Wu, Geng Zhang, De Gao, David Shepard, Yunkui Li, Jeffery Lachapelle
  • Patent number: 10344140
    Abstract: A crystalline Boehmite product and a method of forming said product is provided in which the crystalline Boehmite exhibits an average particle size (d50) that is less than 7,000 nanometers. This method comprises preparing an aqueous slurry by mixing together water, large aluminum oxide precursors, a highly dispersible Boehmite grade, and optionally, an organic dispersing agent; adjusting the pH of the slurry; heating the slurry for a predetermined duration of time; collecting the slurry to form a wet cake; and drying the wet cake to obtain the crystalline Boehmite product. The crystalline Boehmite product may be mixed with a plastic resin to form a flame retardant plastic mixture, which can be subjected to a conventional plastic processing method to form a flame retardant composite.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 9, 2019
    Assignee: Pacific Industrial Development Corporation
    Inventors: David Shepard, Nicholas Goodman, Jeffery Lachapelle, John Novak, Wei Wu
  • Patent number: 10328421
    Abstract: The present disclosure generally provides novel STT-type zeolite materials called PIDC-120501, PIDC-120502, and PIDC-120805/120806 or PIDC-type zeolites and a method of making these zeolites. The present disclosure also provides for the use of these zeolite materials as a catalyst and a method of preparing said catalyst. The PIDC-type zeolites or STT-type zeolite materials may be used as a catalyst, such as in Selective Catalytic Reduction (SCR) applications.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: June 25, 2019
    Assignee: Pacific Industrial Development Corporation
    Inventors: Manjola Mancka, Yunkui Li, Jeffery LaChapelle, Wei Wu, David Shepard