Patents by Inventor Jeffery R. Harris

Jeffery R. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170145287
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Jeffery R. Harris, Frank E. Evans
  • Patent number: 9598627
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: March 21, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery R. Harris, Frank E. Evans
  • Patent number: 9404029
    Abstract: A non-aqueous wellbore servicing fluid comprising a rheology modifier wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine. A method of conducting an oilfield operation comprising placing an oil-based mud comprising a rheology modifier into a wellbore wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 2, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery R. Harris, Jim D. Byers
  • Publication number: 20150225638
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 13, 2015
    Inventors: Jeffery R. Harris, Frank E. Evans
  • Publication number: 20150159075
    Abstract: A non-aqueous wellbore servicing fluid comprising a rheology modifier wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine. A method of conducting an oilfield operation comprising placing an oil-based mud comprising a rheology modifier into a wellbore wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 11, 2015
    Inventors: Jeffery R. Harris, Jim D. Byers
  • Patent number: 9034800
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 19, 2015
    Assignee: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jeffery R. Harris, Frank E. Evans
  • Patent number: 8759260
    Abstract: Disclosed herein is a polymer useful in a method of forming a wellbore fluid additive. This polymer comprises a polyethylene backbone comprising pendant aminoalkylsulfonic acid amides which comprise a carbonyl directly attached to a backbone carbon, and an amide formed via the amine group from the aminoalkylsulfonic acid. Methods of preparing these polymers by addition of the aminoalkylsulfonic acid to a polymeric anhydride are disclosed. Methods related to oil extraction using the wellbore fluid with the additive are also disclosed.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 24, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery R Harris, Marshall D Bishop, Jeffery C Gee, Carleton E Stouffer
  • Patent number: 8575072
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 5, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery R. Harris, Frank E. Evans
  • Publication number: 20130288933
    Abstract: A non-aqueous wellbore servicing fluid comprising a rheology modifier wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine. A method of conducting an oilfield operation comprising placing an oil-based mud comprising a rheology modifier into a wellbore wherein the rheology modifier comprises a reaction product of a polysulfide, a dimer acid and a polyfunctional amine.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jeffery R. Harris, Jim D. Byers
  • Publication number: 20130085085
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jeffery R. HARRIS, Frank E. EVANS
  • Publication number: 20130085086
    Abstract: A non-aqueous wellbore servicing fluid comprising a fluid loss additive wherein the fluid loss additive comprises the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid. A method of conducting an oil-field operation comprising placing a non-aqueous wellbore servicing fluid downhole wherein the non-aqueous wellbore servicing fluid comprises a fluid loss additive comprising the reaction product of (i) a functional polymer and (ii) an oligomerized fatty acid.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jeffery R. HARRIS, Frank E. EVANS
  • Publication number: 20110136702
    Abstract: Disclosed herein is a polymer useful in a method of forming a wellbore fluid additive. This polymer comprises a polyethylene backbone comprising pendant aminoalkylsulfonic acid amides which comprise a carbonyl directly attached to a backbone carbon, and an amide formed via the amine group from the aminoalkylsulfonic acid. Methods of preparing these polymers by addition of the aminoalkylsulfonic acid to a polymeric anhydride are disclosed. Methods related to oil extraction using the wellbore fluid with the additive are also disclosed.
    Type: Application
    Filed: June 2, 2010
    Publication date: June 9, 2011
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Jeffery R. Harris, Marshall D. Bishop, Jeffery C. Gee, Carleton E. Stouffer
  • Patent number: 7939584
    Abstract: Drag reduction of hydrocarbon fluids flowing through pipelines of various lengths is improved by polyolefin drag reducer dispersions or dispersions using bi- or multi-modal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes. By using at least bi-modal particle size distributions drag reduction can be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner or earlier in the pipeline and larger sized particles dissolve later or further along the pipeline.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 10, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffery R. Harris, Lu Chien Chou, George G. Ramsay, John F. Motier, Nagesh S. Kommareddi, Thomas Mathew
  • Patent number: 7119132
    Abstract: A process for continuously producing a polymer drag reducing agent (DRA) is described. The process concerns mixing a monomer and a catalyst in at least one continuously stirred tank reactor (CSTR) to form a mixture. The mixture is continuously injected into a volume continuously formed by a thermoplastic material, such as polyethylene. The thermoplastic material is periodically sealed off to form a temporary container or bag. The monomer is permitted to polymerize in the temporary container to form polymer. In one non-limiting embodiment, the polymerization in the bag takes place within an inert, circulating fluid that accelerates heat transfer. The polymer and the temporary container are then ground together, preferably at non-cryogenic temperatures, to produce a particulate polymer drag reducing agent. In one preferred, non-limiting embodiment, the grinding or pulverizing occurs in the presence of at least one solid organic grinding aid.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 10, 2006
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffery R. Harris, John F. Motier, Lu-Chien Chou, Thomas J. Martin
  • Patent number: 6946500
    Abstract: A process for producing fine particulate polymer drag reducing agent (DRA) without cryogenic temperatures, is described. The grinding or pulverizing of polymer, such as poly(alpha-olefin) may be achieved by the use of at least one solid organic grinding aid and at least one liquid grinding aid. In one non-limiting embodiment of the invention, the grinding is conducted at ambient temperature. Examples of a solid organic grinding aid include ethene/butene copolymer particles, paraffin waxes and solid alcohols. An example of a suitable liquid grinding aid includes a blend of glycol, water and isopropyl alcohol. Particulate DRA may be produced at a size of about 500 microns or less. Use of an attrition mill is preferred.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 20, 2005
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffery R. Harris, John F. Motier
  • Publication number: 20040167300
    Abstract: Temperature control and efficient heat transfer are important to producing high quality polymer drag reducing agents from alpha-olefin and/or other monomers. Many polymerization reactions are exothermic, and controlling or minimizing the exotherm combined with low reaction temperatures yields high molecular weight and, for poly(alpha-olefins), high quality drag reducing agent polymers. It has been found that a shell and tube heat exchanger-type reactor, with the inner tubes hosting the reaction mixture and a coolant circulating through the shell side gives good temperature control. The use of appropriate release agents helps to keep the inner reaction chambers from building up any polymer residue. These reactors can be operated in a continuous filling and harvesting mode to facilitate the continuous production of polymer drag reducing agent and related formulations.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Inventors: Nagesh S. Kommareddi, Thomas Mathew, Jeffery r. Harris, John F. Motier
  • Publication number: 20040132883
    Abstract: A process for continuously producing a polymer drag reducing agent (DRA) is described. The process concerns mixing a monomer and a catalyst in at least one continuously stirred tank reactor (CSTR) to form a mixture. The mixture is continuously injected into a volume continuously formed by a thermoplastic material, such as polyethylene. The thermoplastic material is periodically sealed off to form a temporary container or bag. The monomer is permitted to polymerize in the temporary container to form polymer. In one non-limiting embodiment, the polymerization in the bag takes place within an inert, circulating fluid that accelerates heat transfer. The polymer and the temporary container are then ground together, preferably at non-cryogenic temperatures, to produce a particulate polymer drag reducing agent. In one preferred, non-limiting embodiment, the grinding or pulverizing occurs in the presence of at least one solid organic grinding aid.
    Type: Application
    Filed: October 27, 2003
    Publication date: July 8, 2004
    Inventors: Jeffery R. Harris, John F. Motier, Lu-Chien Chou, Thomas J. Martin
  • Publication number: 20040112995
    Abstract: A process for producing fine particulate polymer drag reducing agent (DRA) by without cryogenic temperatures, is described. The grinding or pulverizing of polymer, such as poly(alpha-olefin) may be achieved by the use of at least one solid organic grinding aid and at least one liquid grinding aid. In one non-limiting embodiment of the invention, the grinding is conducted at ambient temperature. Examples of a solid organic grinding aid include ethene/butene copolymer particles, paraffin waxes and solid alcohols. An example of a suitable liquid grinding aid includes a blend of glycol, water and isopropyl alcohol. Particulate DRA may be produced at a size of about 500 microns or less. Use of an attrition mill is preferred.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Inventors: Jeffery R. Harris, John F. Motier
  • Patent number: 6649670
    Abstract: A process for continuously producing a polymer drag reducing agent (DRA) is described. The process concerns mixing a monomer and a catalyst in at least one continuously stirred tank reactor (CSTR) to form a mixture. The mixture is continuously injected into a volume continuously formed by a thermoplastic material, such as polyethylene. The thermoplastic material is periodically sealed off to form a temporary container or bag. The monomer is permitted to polymerize in the temporary container to form polymer. In one non-limiting embodiment, the polymerization in the bag takes place within an inert, circulating fluid that accelerates heat transfer. The polymer and the temporary container are then ground together, preferably at non-cryogenic temperatures, to produce a particulate polymer drag reducing agent. In one preferred, non-limiting embodiment, the grinding or pulverizing occurs in the presence of at least one solid organic grinding aid.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: November 18, 2003
    Assignee: Baker Hughes Incorporated
    Inventors: Jeffery R. Harris, John F. Motier, Mike Callaway, George G. Ramsay
  • Patent number: 5240464
    Abstract: The process for chemically modifying metal-free, organic material for improving one or more properties thereof such as water dispersibility, compatibility with other organics, or increased chemical reactivity, wherein the process includes providing material with from 1-6 sulfonylhalide groups or sulfonate ester groups or mixtures thereof, and contacting the material under sulfonamido forming conditions with one or more reactants containing one or more poly(oxyalkylene) moieties, each of the reactants having from 1 to 4 functional amine groups, and each of the poly(oxyalkylene) moieties being comprised of from about 4 to about 200 epoxide reactant residues at least about 50 mole percent of which residues contain 2-4 carbons.
    Type: Grant
    Filed: June 2, 1992
    Date of Patent: August 31, 1993
    Assignee: Milliken Research Corporation
    Inventors: Edward W. Kluger, Max A. Weaver, Jeffery R. Harris, David J. Moody