Patents by Inventor Jeffery Saunders

Jeffery Saunders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210142680
    Abstract: The present disclosure is directed to systems and methods for trajectory and route planning including obstacle detection and avoidance for an aerial vehicle. For example, an aerial vehicle's flight control system may include a trajectory planner that may use short segments calculated using an iterative Dubins path to find a first path between a start point and an end point that does not avoid obstacles. Then the trajectory planner may use a rapidly exploring random tree algorithm that uses points along the first path as seed points to find a trajectory or route between the start point and end point that avoids known or detected obstacles.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 13, 2021
    Inventor: Jeffery Saunders
  • Publication number: 20210034076
    Abstract: In an example, a method of generating flight paths for navigating an aircraft is provided. The method includes hovering the aircraft at a predetermined hover point. The predetermined hover point corresponds to a first takeoff waypoint of a first trajectory of the aircraft. The method includes scanning at least a portion of a first flight path of the first trajectory. The method includes determining that an obstacle obstructs the first flight path of the first trajectory. The first flight path begins at the first takeoff waypoint. The method includes determining a second takeoff waypoint. Determining the second takeoff waypoint includes assigning the first flight path to begin at the second takeoff waypoint. The method includes changing the first flight path of the first trajectory in accordance with the second takeoff waypoint, thereby forming a second flight path of a second trajectory.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 4, 2021
    Inventors: Jeffery SAUNDERS, John F. LANGFORD, Jason T. JEWELL
  • Patent number: 10878706
    Abstract: The present disclosure is directed to systems and methods for trajectory and route planning including obstacle detection and avoidance for an aerial vehicle. For example, an aerial vehicle's flight control system may include a trajectory planner that may use short segments calculated using an iterative Dubins path to find a first path between a start point and an end point that does not avoid obstacles. Then the trajectory planner may use a rapidly exploring random tree algorithm that uses points along the first path as seed points to find a trajectory or route between the start point and end point that avoids known or detected obstacles.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 29, 2020
    Assignee: Aurora Flight Sciences Corporation
    Inventor: Jeffery Saunders
  • Publication number: 20200118446
    Abstract: The present disclosure is directed to systems and methods for trajectory and route planning including obstacle detection and avoidance for an aerial vehicle. For example, an aerial vehicle's flight control system may include a trajectory planner that may use short segments calculated using an iterative Dubins path to find a first path between a start point and an end point that does not avoid obstacles. Then the trajectory planner may use a rapidly exploring random tree algorithm that uses points along the first path as seed points to find a trajectory or route between the start point and end point that avoids known or detected obstacles.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 16, 2020
    Inventor: Jeffery Saunders
  • Publication number: 20200082731
    Abstract: A system and method for tracking non-cooperative obstacles during operation of a vehicle is provided. The system may include a radar system, an optical sensor, and a processor. The radar system can be coupled to the vehicle and configured to scan a first airspace and generate radar information having a first resolution. The optical sensor can be coupled to the vehicle and configured to image a second airspace and generate optical information at a second resolution that is higher than the first resolution, where the second airspace is within said first airspace and includes a non-cooperative obstacle. The processor can be configured to identify the non-cooperative obstacle within the first airspace based at least in part on the radar information, and direct the optical sensor toward a location of the non-cooperative obstacle using the radar information.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 12, 2020
    Inventors: Jae-Woo Choi, Jeffery Saunders, James D. Paduano
  • Publication number: 20190324456
    Abstract: An autonomy system for use with a vehicle in an environment. The autonomy system comprising a processor operatively coupled with a memory device, a plurality of sensors operatively coupled with the processor; a vehicle controller, a situational awareness module, a task planning module, and a task execution module. The situational awareness module being configured to determine a state of the environment based at least in part on sensor data from at least one of the plurality of sensors. The task planning module being configured to identify, via the processor, a plurality of tasks to be performed by the vehicle and to generate a task assignment list from the plurality of tasks that is based at least in part on predetermined optimization criteria. The task execution module being configured to instruct the vehicle controller to execute the plurality of tasks in accordance with the task assignment list.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Inventors: Jason Ryan, Jeffery Saunders
  • Publication number: 20180135798
    Abstract: A gimbal stabilizing system for an aircraft having an airframe is disclosed. The gimbal stabilizing system may comprise a gimbal apparatus having at least one gimbal actuator to adjust a position of the gimbal apparatus about an axis, wherein the gimbal apparatus is positioned on the airframe, an angular acceleration apparatus positioned on the airframe to generate an angular acceleration signal reflecting an angular acceleration of the airframe, and a gimbal controller operatively coupled to each of said angular acceleration apparatus and said gimbal apparatus. The gimbal controller may be configured to generate a gimbal control signal to compensate for the angular acceleration of the airframe based at least in part on a feedback control loop and a feedforward control loop, the feedforward control loop having the angular acceleration signal as an input thereto.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 17, 2018
    Inventors: Riley Griffin, Jeffery Saunders