Patents by Inventor Jeffery W. Samuelson

Jeffery W. Samuelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9322089
    Abstract: A nickel-based alloy suitable for casting gas turbine components having a lower density and basic heat treating process while achieving improved strength is disclosed. Multiple embodiments of the alloy are disclosed capable of providing both directionally-solidified and equiaxed castings. Also disclosed is a method of making a cast and heat treated article utilizing the improved nickel-base alloy.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: April 26, 2016
    Assignee: Alstom Technology Ltd
    Inventors: Charles Biondo, J. Page Strohl, Jeffery W. Samuelson, Gerhard E. Fuchs, Stanley T. Wlodek, Ramona T. Wlodek
  • Patent number: 8210819
    Abstract: An airfoil structure, shim, and retention member combination includes an airfoil structure, a retention member and a shim. The airfoil structure may define a first recess. The retention member may define a second recess. The first and second recesses may define a cavity. The shim may include a main body and a plurality of first fins extending outwardly from a first side of the main body. The first fins may further extend transverse to a longitudinal axis of the main body. The shim may be positioned in the cavity such that the first fins extend in a direction substantially transverse to a longitudinal axis of the cavity.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: July 3, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: David J Wiebe, John W Finneran, Jeffery W Samuelson, Richard C Charron
  • Patent number: 7862296
    Abstract: A turbine vane attachment system configured to eliminate movement of a turbine vane relative to a turbine vane carrier. The turbine vane attachment system may include a base attached to a turbine airfoil. The base may be configured to contact a wedge support along a plane that is generally nonparallel and nonorthogonal with a longitudinal axis of the airfoil. A bolt may connect the base with the wedge support. The bolt may change a distance between a channel in the base and an outer bearing surface. The turbine vane may be positioned in a vane carrier such that tongues extending from the vane carrier are positioned in the channels. As the bolt is advanced, the wedge support is moved laterally along the support surface of the base and the channels engage the tongues, thereby preventing movement of the turbine vane.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 4, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: John W. Finneran, Jeffery W. Samuelson, Richard C. Charron
  • Publication number: 20100080729
    Abstract: A nickel-based alloy suitable for casting gas turbine components having a lower density and basic heat treating process while achieving improved strength is disclosed. Multiple embodiments of the alloy are disclosed capable of providing both directionally-solidified and equiaxed castings. Also disclosed is a method of making a cast and heat treated article utilizing the improved nickel-base alloy.
    Type: Application
    Filed: July 25, 2006
    Publication date: April 1, 2010
    Applicant: Power Systems Manufacturing, LLC
    Inventors: Charles Biondo, J. Page Strohl, Jeffery W. Samuelson, Gerhard E. Fuchs, Stanley T. Wlodek, Ramona T. Wlodek
  • Publication number: 20090214349
    Abstract: An airfoil structure, shim and retention member combination is provided. The combination comprises an airfoil structure, a retention member and a shim. The airfoil structure may comprise a first recess. The retention member may comprising a second recess. The first and second recesses may define a cavity. The shim may comprise a main body and a plurality of first fins extending outwardly from a first side of the main body. The first fins may further extend transverse to a longitudinal axis of the main body. The shim may be positioned in the cavity such that the first fins extend in a direction substantially transverse to a longitudinal axis of the cavity.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Applicant: SIEMENS POWER GENERATION, INC.
    Inventors: David J. Wiebe, John W. Finneran, Jeffery W. Samuelson, Richard C. Charron
  • Publication number: 20090053056
    Abstract: A turbine vane attachment system configured to eliminate movement of a turbine vane relative to a turbine vane carrier. The turbine vane attachment system may include a base attached to a turbine airfoil. The base may be configured to contact a wedge support along a plane that is generally nonparallel and nonorthogonal with a longitudinal axis of the airfoil. A bolt may connect the base with the wedge support. The bolt may change a distance between a channel in the base and an outer bearing surface. The turbine vane may be positioned in a vane carrier such that tongues extending from the vane carrier are positioned in the channels. As the bolt is advanced, the wedge support is moved laterally along the support surface of the base and the channels engage the tongues, thereby preventing movement of the turbine vane.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Applicant: Siemens Power Generation, Inc.
    Inventors: John W. Finneran, Jeffery W. Samuelson, Richard C. Charron
  • Patent number: 5120373
    Abstract: A process for producing a fine grain forged superalloy article having a high yield strength at intermediate temperatures. A preferred starting composition comprises, by weight, 15% Cr, 13.6% Co, 4.1% Mo, 4.6% Ti, 2.2% Al, 0.01% C, 0.007% B, 0.07% Zr, balance Ni. This material is forged at a temperature above the gamma prime solvus and at a true strain of at least 0.5. Alternately, the material may be forged below the gamma prime solvus temperature with intermediate super solvus anneals. The overaged material is then worked at a temperature below the gamma prime solvus. The resultant fine grain material is then heat treated or can be further isothermally forged prior to heat treatment to produce complex shapes.
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: June 9, 1992
    Assignees: United Technologies Corporation, Teledyne Industries, Inc.
    Inventors: John A. Miller, Daniel F. Paulonis, Paul D. Genereux, Jeffery W. Samuelson, Laurence A. Jackman, Frederick P. Vaccaro, William M. Thomas