Patents by Inventor Jeffrey A. Platt

Jeffrey A. Platt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230029506
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: June 3, 2022
    Publication date: February 2, 2023
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Le CONG, David Benjamin Turitz COX, Matthias HEIDENREICH, Randall Jeffrey PLATT, Lukasz SWIECH, Feng ZHANG
  • Patent number: 11459557
    Abstract: Methods and compositions for inducing a plurality of mutations in transgenic Cas9 eukaryotes to model a neuronal disease or disorder. The invention further comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g., autism, autism-spectrum disease or disorder, obsessive-compulsive disorder, or psychiatric disorders.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: October 4, 2022
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Randall Jeffrey Platt, Feng Zhang, Ian Slaymaker
  • Patent number: 11407985
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: August 9, 2022
    Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Le Cong, David Benjamin Turitz Cox, Matthias Heidenreich, Randall Jeffrey Platt, Lukasz Swiech, Feng Zhang
  • Publication number: 20220049232
    Abstract: The present invention relates to a method for recording a transcriptome of a cell, the method comprising the steps of: providing a test cell comprising: a first transgene nucleic acid sequence encoding a fusion protein comprising a reverse transcriptase polypeptide and a Cas1 polypeptide and a second transgene nucleic acid sequence encoding a Cas2 polypeptide, wherein said first transgene nucleic acid sequence and said second transgene nucleic acid sequence are under transcriptional control of an inducible promoter sequence, and a third transgene nucleic acid sequence comprising a CRISPR direct repeat (DR) sequence; wherein said CRISPR direct repeat sequence is specifically recognizable by a RT-Cas1-Cas2 complex formed by the expression products of said first transgene nucleic acid sequence and said second transgene nucleic acid sequence, exposing said test cell to conditions under which expression of said first transgene nucleic acid sequence and said second transgene nucleic acid sequence is induced, wherei
    Type: Application
    Filed: September 11, 2019
    Publication date: February 17, 2022
    Applicant: ETH ZÜRICH
    Inventors: Randall Jeffrey PLATT, Florian SCHMIDT
  • Patent number: 11124796
    Abstract: The invention involves inducing 3-50 or more mutations (e.g., any whole number between 3 and 50 of mutations, with it noted that in some embodiments there can be up to 16 different RNA(s), e.g., sgRNAs each having its own a promoter, in a vector, such as AAV, and that when each sgRNA does not have its own promoter, there can be twice to thrice that amount of different RNA(s), e.g., sgRNAs, e.g., 32 or even 48 different guides delivered by one vector) in transgenic Cas9 eukaryotes to model genetic disease, e.g. cancer. The invention comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g., cancer.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: September 21, 2021
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Phillip A. Sharp, Feng Zhang, Randall Jeffrey Platt, Sidi Chen
  • Publication number: 20210269831
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: April 30, 2021
    Publication date: September 2, 2021
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Feng ZHANG, Randall Jeffrey PLATT, Guoping FENG, Yang ZHOU
  • Patent number: 11041173
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery systems and tissues or organ which are targeted as sites for delivery. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: June 22, 2021
    Assignees: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Feng Zhang, Randall Jeffrey Platt, Guoping Feng, Yang Zhou
  • Publication number: 20210145827
    Abstract: Antibiotic gel formulations for use in dental applications are disclosed. More particularly, the present disclosure is directed to antibiotic gel formulations including low concentrations of antibiotics that are capable of killing root canal pathogens without harming the stem cells inside the root canal. Additionally, the present disclosure is directed to delivery systems and methods for applying the antibiotic gel formulations into a subject's intracanal region.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 20, 2021
    Applicant: Indiana University Research and Technology Corporation
    Inventors: Ghaeth H. Yassen, Jeffrey A. Platt, Richard L. Gregory
  • Publication number: 20200340015
    Abstract: The invention provides for delivery, engineering and optimization of systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are delivery particle formulations and/or systems comprising one or more components of a CRISPR-Cas system, which are means for targeting sites for delivery. The delivery particle formulations of the invention are preferably nanoparticle delivery formulations and/or systems. Also provided are vectors and vector systems some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells to ensure enhanced specificity for target recognition and avoidance of toxicity and to edit or modify a target site in a genomic locus of interest to alter or improve the status of a disease or a condition.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 29, 2020
    Applicants: THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: James DAHLMAN, Randall Jeffrey PLATT, Daniel G. ANDERSON, Robert S. LANGER, Feng ZHANG
  • Publication number: 20200080094
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 7, 2019
    Publication date: March 12, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200063147
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 5, 2019
    Publication date: February 27, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200032278
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20200032277
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20190040399
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/CAS system.
    Type: Application
    Filed: April 30, 2018
    Publication date: February 7, 2019
    Inventors: Feng ZHANG, Le CONG, David Benjamin Turitz COX, Patrick HSU, Shuailiang LIN, Fei RAN, Randall Jeffrey PLATT, Neville Espi SANJANA
  • Publication number: 20190017058
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/CAS system.
    Type: Application
    Filed: April 30, 2018
    Publication date: January 17, 2019
    Inventors: Feng Zhang, Le CONG, David Benjamin Turitz COX, Patrick HSU, Shuailiang LIN, Fei RAN, Randall Jeffrey PLATT, Neville Espi SANJANA
  • Publication number: 20180327756
    Abstract: The invention provides for systems, methods, and compositions for manipulation of sequences and/or activities of target sequences. Provided are vectors and vector systems, some of which encode one or more components of a CRISPR complex, as well as methods for the design and use of such vectors. Also provided are methods of directing CRISPR complex formation in eukaryotic cells and methods for selecting specific cells by introducing precise mutations utilizing the CRISPR/Cas system.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 15, 2018
    Inventors: Feng Zhang, Le Cong, David Benjamin Turitz Cox, Patrick Hsu, Shuailiang Lin, Fei Ran, Randall Jeffrey Platt, Neville Espi Sanjana
  • Publication number: 20180263860
    Abstract: Antibiotic gel formulations for use in dental applications are disclosed. More particularly, the present disclosure is directed to antibiotic gel formulations including low concentrations of antibiotics that are capable of killing root canal pathogens without harming the stem cells inside the root canal. Additionally, the present disclosure is directed to delivery systems and methods for applying the antibiotic gel formulations into a subject's intracanal region.
    Type: Application
    Filed: August 23, 2016
    Publication date: September 20, 2018
    Inventors: Ghaeth H. Yassen, Jeffrey A. Platt, Richard L. Gregory
  • Publication number: 20180250292
    Abstract: Antibiotic gel formulations for use in dental applications are disclosed. More particularly, the present disclosure is directed to antibiotic gel formulations including low concentrations of antibiotics that are capable of killing root canal pathogens without harming the stem cells inside the root canal. Additionally, the present disclosure is directed to delivery systems and methods for applying the antibiotic gel formulations into a subject's intracanal region.
    Type: Application
    Filed: August 23, 2016
    Publication date: September 6, 2018
    Inventors: Ghaeth H. Yassen, Jeffrey A. Platt, Richard L. Gregory
  • Publication number: 20180112255
    Abstract: The present invention relates to in vivo methods for modeling tumor formation and/or tumor evolution comprising the use of eukaryotic cells in which one or more genetic target locus has been altered by the CRISPR/Cas system, and which cells are transplanted in non-human eukaryote as a model system for tumor formation and tumor evolution. In particular in vivo genetic screening methods for identifying genes involved in tumorigenesis and metastasis are disclosed. The invention further relates to kits and components for practicing the methods, as well as materials obtainable by the methods, in particular tumor and metastasis samples and cells or cell lines derived therefrom. The invention also relates to diagnostic and therapeutic methods derived from the information obtained in the modeling methods.
    Type: Application
    Filed: June 30, 2017
    Publication date: April 26, 2018
    Inventors: Sidi Chen, Randall Jeffrey Platt, Neville Espi Sanjana, Phillip A. Sharp, Feng Zhang
  • Publication number: 20180044662
    Abstract: The invention involves inducing a plurality e.g., 3-50 or more mutations (e.g., any whole number between 3 and 50 or more of mutations, with it noted that in some embodiments there can be up to 16 different RNA(s), e.g., sgRNAs each having its own a promoter, in a vector, such an AAV vector or a lentiviral vector and that when each sgRNA does not have its own promoter, there can be twice to thrice that amount of different RNA(s), e.g., sgRNAs, e.g., 32 or even 48 different guides delivered by one vector) in transgenic Cas9 eukaryotes to model a neuronal disease or disorder. The invention comprehends testing putative treatments with such models, e.g., testing putative chemical compounds that may be pharmaceutically relevant for treatment or gene therapy that may be relevant for treatment, or combinations thereof. The invention allows for the study of genetic diseases and putative treatments to better understand and alleviate a genetic disease or a condition, e.g.
    Type: Application
    Filed: March 23, 2017
    Publication date: February 15, 2018
    Inventors: Randall Jeffrey PLATT, Feng ZHANG, Ian SLAYMAKER