Patents by Inventor Jeffrey A. Sturgill

Jeffrey A. Sturgill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7789958
    Abstract: Corrosion-inhibiting pigments based on manganese are described that contain a trivalent or tetravalent manganese/valence stabilizer complex. An inorganic or organic material is used to stabilize the trivalent or tetravalent manganese ion to form a compound that is sparingly soluble, exhibits low solubility, or is insoluble in water, depending upon the intended usage. Specific stabilizers are chosen to control the release rate of trivalent or tetravalent manganese during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Stabilizers may also modify the processing and handling characteristics of the formed powders. Manganese/valence stabilizer combinations are chosen based on the well-founded principles of manganese coordination chemistry. Many manganese-valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium or tetravalent lead systems.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: September 7, 2010
    Assignee: University of Dayton
    Inventors: Jeffrey A. Sturgill, Andrew Wells Phelps, Joseph T. Swartzbaugh
  • Patent number: 7537663
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: May 26, 2009
    Assignee: University of Dayton
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Publication number: 20070149673
    Abstract: Corrosion-inhibiting pigments based on manganese are described that contain a trivalent or tetravalent manganese/valence stabilizer complex. An inorganic or organic material is used to stabilize the trivalent or tetravalent manganese ion to form a compound that is sparingly soluble, exhibits low solubility, or is insoluble in water, depending upon the intended usage. Specific stabilizers are chosen to control the release rate of trivalent or tetravalent manganese during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Stabilizers may also modify the processing and handling characteristics of the formed powders. Manganese/valence stabilizer combinations are chosen based on the well-founded principles of manganese coordination chemistry. Many manganese-valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium or tetravalent lead systems.
    Type: Application
    Filed: January 4, 2007
    Publication date: June 28, 2007
    Inventors: Jeffrey Sturgill, Andrew Phelps
  • Publication number: 20040231754
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Application
    Filed: June 23, 2004
    Publication date: November 25, 2004
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Patent number: 6818313
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: November 16, 2004
    Assignee: University of Dayton
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Publication number: 20040016363
    Abstract: A corrosion-inhibiting coating, process, and system that provides a tight, adherent zinc- or zinc-alloy coating that is directly deposited onto steel or cast iron surfaces for enhanced corrosion protection. A process for applying the coating is also provided. The process includes the application of two sequential aqueous baths. The first bath contains a precursor zinc compound while the second bath contains a reducing agent to deposit the zinc directly upon the steel or cast iron.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 29, 2004
    Inventors: Andrew W. Phelps, Jeffrey A. Sturgill
  • Publication number: 20040011252
    Abstract: Corrosion-inhibiting pigments based on manganese are described that contain a trivalent or tetravalent manganese/valence stabilizer complex. An inorganic or organic material is used to stabilize the trivalent or tetravalent manganese ion to form a compound that is sparingly soluble, exhibits low solubility, or is insoluble in water, depending upon the intended usage. Specific stabilizers are chosen to control the release rate of trivalent or tetravalent manganese during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Stabilizers may also modify the processing and handling characteristics of the formed powders. Manganese/valence stabilizer combinations are chosen based on the well-founded principles of manganese coordination chemistry. Many manganese-valence stabilizer combinations are presented that can equal the performance of conventional hexavalent chromium or tetravalent lead systems.
    Type: Application
    Filed: January 13, 2003
    Publication date: January 22, 2004
    Inventors: Jeffrey A. Sturgill, Andrew Wells Phelps
  • Publication number: 20030221590
    Abstract: Corrosion-inhibiting pigments based on manganese are described that contain a heptavalent (permanganate), hexavalent (manganate), or pentavalent (manganate) compound. An inorganic or organic material is used with the heptavalent, hexavalent, or pentavalent manganese ion to form a compound that is sparingly soluble in water. Specific solubility control cations are chosen to control the release rate of heptavalent, hexavalent, or pentavalent manganese during exposure to water and to tailor the compatibility of the powder when used as a pigment in a chosen binder system. Solubility control agents may also modify the processing and handling characteristics of the formed powders. Many permanganate or manganate compounds are presented that can equal the performance of conventional hexavalent chromium systems. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Application
    Filed: January 13, 2003
    Publication date: December 4, 2003
    Inventors: Jeffrey A. Sturgill, Andrew Wells Phelps
  • Patent number: 6111192
    Abstract: An EMI shielded collapsible enclosure includes an upper enclosure half having a top wall connecting a surrounding upper sidewall, the top wall and upper sidewall being adapted to provide EMI resistance. A lower enclosure half has a bottom wall connecting a surrounding sidewall, the bottom wall and lower sidewall being adapted to provide EMI resistance. The upper sidewall and lower sidewall are of similar shape, with one smaller than the other to be telescopically received therein. Actuators are operatively associated with the upper enclosure half and the lower enclosure half for selectively extending or retracting the enclosure halves between a transport mode and an operational mode, an interior space defined by the upper enclosure half and the lower enclosure half being substantially larger in the operational mode.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: August 29, 2000
    Assignee: Marion Composites
    Inventors: Dean P. Bell, Elizabeth D. Burke, Paul E. Case, Donald E. Johnston, Ronald L. McCord, Donald Stanulis, W. Jeffrey Sturgill
  • Patent number: 5713178
    Abstract: Electromagnetic interference across a structural panel is minimized in a construction wherein a metal skin (24) is bonded to a metal frame (22) by an adhesive (40) by providing a series of peaks (36) and valleys (38) at the area of the intended joint between the skin (24) and the frame (22). The peaks (36) penetrate through the adhesive (40) to establish substantial electrical contact between the skin (24) and the frame (22) to provide shielding against electromagnetic interference while the adhesive (40) bonds the two together to provide a structurally sound panel.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 3, 1998
    Assignee: Marion Composites, A Div. of Technical Products Group, Inc.
    Inventors: W. Jeffrey Sturgill, Paul Case, Donald Stanulis, Robert S. Maule, Richard A. Bamberg