Patents by Inventor Jeffrey Armstrong

Jeffrey Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094029
    Abstract: Techniques for representing a scene or map based on statistical data of captured environmental data are discussed herein. In some cases, the data (such as covariance data, mean data, or the like) may be stored as a multi-resolution voxel space that includes a plurality of semantic layers. In some instances, individual semantic layers may include multiple voxel grids having differing resolutions. Multiple multi-resolution voxel spaces may be merged or aligned to generate combined scenes based on detected voxel covariances at one or more resolutions.
    Type: Application
    Filed: May 31, 2022
    Publication date: March 21, 2024
    Inventors: Hirotatsu Armstrong, Patrick Blaes, Michael Carsten Bosse, Jeffrey Eric Tolliver
  • Publication number: 20240055707
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Application
    Filed: October 26, 2023
    Publication date: February 15, 2024
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Patent number: 11831030
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: November 28, 2023
    Assignee: PACESETTER, INC.
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Patent number: 11767016
    Abstract: A method includes obtaining one or more images of a segment of a route from a camera while a vehicle is moving along the route. The segment of the route includes one or more guide lanes. The method also includes comparing, with one or more computer processors, the one or more images of the segment of the route with a benchmark visual profile of the route based at least in part on an overlay of the one or more images onto the benchmark visual profile or an overlay of the benchmark visual profile onto the one or more images. The one or more processors identify a misaligned segment of the route based on one or more differences between the one or more images and the benchmark visual profile and respond to the identification of the misaligned segment of the route by modifying an operating parameter of the vehicle.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Transportation IP Holdings, LLC
    Inventors: Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, James D. Brooks, Jeffrey Armstrong, Michael Scott Miner, Shannon Joseph Clouse, Harry Kirk Mathews, Jr.
  • Patent number: 11735711
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: August 22, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks, III, Christopher Hallmark, John Duggan
  • Publication number: 20210245747
    Abstract: A method includes obtaining one or more images of a segment of a route from a camera while a vehicle is moving along the route. The segment of the route includes one or more guide lanes. The method also includes comparing, with one or more computer processors, the one or more images of the segment of the route with a benchmark visual profile of the route based at least in part on an overlay of the one or more images onto the benchmark visual profile or an overlay of the benchmark visual profile onto the one or more images. The one or more processors identify a misaligned segment of the route based on one or more differences between the one or more images and the benchmark visual profile and respond to the identification of the misaligned segment of the route by modifying an operating parameter of the vehicle.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 12, 2021
    Inventors: Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, James D. Brooks, Jeffrey Armstrong, Michael Scott Miner, Shannon Joseph Clouse, Harry Kirk Mathews, JR.
  • Publication number: 20210184320
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 17, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks III, Christopher Hallmark, John Duggan
  • Patent number: 10964922
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: March 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Del Charles Brooks, III, Christopher Hallmark, John Duggan, Jeffrey Armstrong
  • Patent number: 10964921
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: March 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Joseph Beauvais, Russell Bruch, Jeffrey Armstrong
  • Patent number: 10868283
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: December 15, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Russell Bruch, Jeffrey Armstrong, Joseph Beauvais
  • Patent number: 10727454
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: July 28, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks, III, Christopher Hallmark, John Duggan
  • Publication number: 20190363313
    Abstract: A method of forming a brazed joint is described. The method includes pressing a non-molybdenum component, such as a cross pin of a battery case assembly, against a molybdenum component, such as a terminal pin of the battery case assembly, and applying one or more electrical pulses to form an interface liquid layer between the components that cools to form the brazed joint. At least one of the electrical pulses has a constant voltage over a pulse time. A contact resistance between the components can decrease during the pulse time, and thus, the constant voltage can cause an uncontrolled electrical current of the electrical pulse to increase. The increasing electrical current heats the components sufficiently to form the interface liquid layer having a predetermined thickness that provides a required bend strength. Removal of surface oxides provide consistent mechanical strength for this joint. Other embodiments are also described and claimed.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 28, 2019
    Inventors: Shichan Chiang, Christopher Hallmark, Michael Erickson, Kurt Erickson, Nicholas Hamor, Jeffrey Armstrong, Philip Edward Poole, Nathan Messerich
  • Publication number: 20190131593
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Application
    Filed: December 27, 2018
    Publication date: May 2, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Del Charles Brooks, III, Christopher Hallmark, John Duggan, Jeffrey Armstrong
  • Publication number: 20190131592
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 2, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Russell Bruch, Jeffrey Armstrong, Joseph Beauvais
  • Publication number: 20190131591
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Joseph Beauvais, Russell Bruch, Jeffrey Armstrong
  • Publication number: 20180138463
    Abstract: A battery includes a case having a feedthrough port, a feedthrough assembly disposed in the feedthrough port, and a cell stack disposed within the case. The feedthrough port includes an inner conductor and an insulator core separating the inner conductor from the case. The cell stack includes an anode, a cathode, and a separator insulating the anode from the cathode, wherein the anode and cathode are offset from one another. An insulating boot surrounding the cell stack insulates the cell stack from the case. The insulating boot has an opening configured to receive therein the feedthrough assembly, which may include overmolded insulation. The interior surfaces and interior walls of the battery case may be thermal spray-coated with a dielectric material to prevent lithium dendrite formation between cathode and anode surfaces.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 17, 2018
    Applicant: Pacesetter, Inc.
    Inventors: Russell Bruch, Joseph Beauvais, Jeffrey Armstrong, Del Charles Brooks, III, Christopher Hallmark, John Duggan
  • Patent number: 9726374
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 8, 2017
    Assignee: ENER-CORE POWER, INC.
    Inventors: Boris A. Maslov, Jeffrey Armstrong
  • Patent number: 9567903
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 14, 2017
    Assignee: ENER-CORE POWER, INC.
    Inventors: Jeffrey Armstrong, Richard Martin, Douglas Hamrin
  • Patent number: 9534780
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 3, 2017
    Assignee: Ener-Core Power, Inc.
    Inventors: Richard Martin, Jeffrey Armstrong, Douglas Hamrin
  • Patent number: 9381484
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: July 5, 2016
    Assignee: ENER-CORE POWER, INC.
    Inventors: Jeffrey Armstrong, Richard Martin, Douglas Hamrin