Patents by Inventor Jeffrey Bradshaw

Jeffrey Bradshaw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11378952
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: July 5, 2022
    Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Patent number: 10839473
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for monitoring vehicles including autonomous vehicles are described. The disclosed technology includes a vehicle monitoring system that receives vehicle data and external data associated with a vehicle and a corresponding predetermined area. The vehicle data includes a vehicle state of the vehicle and the external data includes external states of external objects. An issue type of the vehicle is determined based on the vehicle state and at least one of the external states. An indication of the issue type is generated for display on an interface.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 17, 2020
    Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Publication number: 20200218255
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Publication number: 20200193549
    Abstract: Methods, apparatuses, systems, and non-transitory computer readable storage media for monitoring vehicles including autonomous vehicles are described. The disclosed technology includes a vehicle monitoring system that receives vehicle data and external data associated with a vehicle and a corresponding predetermined area. The vehicle data includes a vehicle state of the vehicle and the external data includes external states of external objects. An issue type of the vehicle is determined based on the vehicle state and at least one of the external states. An indication of the issue type is generated for display on an interface.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 18, 2020
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Patent number: 10591912
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: March 17, 2020
    Assignees: Nissan North America, Inc., Florida Institute for Human & Machine Cognition, Inc.
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch
  • Publication number: 20190294159
    Abstract: Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
    Type: Application
    Filed: November 30, 2017
    Publication date: September 26, 2019
    Inventors: Liam Pedersen, Maarten Sierhuis, Hans Utz, Mauro Della Penna, Jeffrey Bradshaw, Matthew Johnson, Michael Vignati, Lawrence Bunch