Patents by Inventor Jeffrey Brinen

Jeffrey Brinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070264483
    Abstract: A microporous polyolefin membrane comprising a polyethylene resin, and polypropylene having a weight-average molecular weight of 6×105 or more and a heat of fusion of 90 J/g or more (measured by a differential scanning calorimeter), a fraction having a molecular weight of 1.8×106 or more being 10% or more by mass of the polypropylene.
    Type: Application
    Filed: May 15, 2006
    Publication date: November 15, 2007
    Inventors: Hiroyuki Ozaki, Kotaro Kimishima, Koichi Kono, Patrick Brant, Zerong Lin, Jeffrey Brinen
  • Publication number: 20060149103
    Abstract: The present invention provides various processes for producing polypropylene from an oxygenate-contaminated propylene-containing feedstock, preferably derived from an oxygenate to olefin reaction system. In one embodiment, the process includes providing a propylene-containing stream from an oxygenate to olefin reaction system, wherein the propylene-containing stream comprises propylene and an oxygenate. The propylene in the propylene-containing stream contacts a polymerization catalyst in a polymerization zone under conditions effective to polymerize the propylene to form the polypropylene.
    Type: Application
    Filed: March 25, 2005
    Publication date: July 6, 2006
    Inventors: John Shutt, Jeffrey Brinen
  • Publication number: 20060014991
    Abstract: A process is described for producing olefins from a vapor product stream from an oxygenate to olefin conversion reaction, the vapor product stream comprising C2 to C4 olefins, C5+ hydrocarbons, at least one oxygenate and water. In the process, the vapor product stream is cooled to remove water therefrom and produce a first vapor effluent stream. The first vapor effluent stream is then cooled and compressed to produce a condensed liquid effluent stream comprising C5+ hydrocarbons and at least one oxygenate, and a residual vapor effluent stream comprising C2 to C4 olefins. At least part of the condensed liquid effluent stream is contacted with a liquid water-containing stream in a liquid-liquid contacting device to at least partly separate said condensed liquid effluent stream, or portion thereof, into an aqueous phase rich in said at least one oxygenate and an organic phase rich in said C5+ hydrocarbons.
    Type: Application
    Filed: March 25, 2005
    Publication date: January 19, 2006
    Inventors: Keith Kuechler, Jeffrey Brinen, Philip Ruziska
  • Publication number: 20060014990
    Abstract: A process is described for producing olefins from a vapor product stream from an oxygenate to olefin conversion reaction, the vapor product stream comprising C2 to C4 olefins, C5+ hydrocarbons, at least one oxygenate and water. In the process, the vapor product stream is cooled to remove water therefrom and produce a first vapor effluent stream. The first vapor effluent stream is then cooled and compressed to produce a condensed liquid effluent stream comprising C5+ hydrocarbons and at least one oxygenate, and a residual vapor effluent stream comprising C2 to C4 olefins. At least part of the condensed liquid effluent stream is contacted with a liquid water-containing stream in a liquid-liquid contacting device to at least partly separate said condensed liquid effluent stream, or portion thereof, into an aqueous phase rich in said at least one oxygenate and an organic phase rich in said C5+ hydrocarbons.
    Type: Application
    Filed: July 14, 2004
    Publication date: January 19, 2006
    Inventors: Keith Kuechler, Jeffrey Brinen, Philip Ruziska
  • Publication number: 20060004239
    Abstract: A process for producing olefins comprises providing a vapor product stream from an oxygenate to olefin reaction, the vapor product stream comprising C2 to C4 olefins, C2 to C6 carbonyl compounds and water. The vapor product stream is cooled to provide a first vapor effluent stream comprising no more than 10 wt. % water, and a liquid water-rich stream. The first vapor effluent stream, and a first wash flash vapor stream, are compressed from a first pressure to a second pressure greater than said first pressure to form a second vapor effluent stream, which is then cooled to form a cooled second effluent stream that is at least partially in the vapor state.
    Type: Application
    Filed: July 1, 2004
    Publication date: January 5, 2006
    Inventors: Keith Kuechler, Jeffrey Brinen, Philip Ruziska
  • Publication number: 20050283038
    Abstract: A process is described for producing an olefins stream from a first vapor effluent stream from an oxygenate to olefin conversion reaction, said first vapor effluent stream comprising C2 and C3 olefins, C4 hydrocarbons, and C2 to C6 carbonyl compounds. In the process, the temperature and pressure of the first vapor effluent stream are adjusted to produce a second vapor effluent stream having a pressure ranging from about 100 psig to about 350 psig (790 to 2514 kPa) and a temperature ranging from about 70° F. to about 120° F. (21 to 49° C.), said second vapor effluent stream containing about 50 wt. % or more C4 hydrocarbons based upon the total weight of C4 hydrocarbons in the first vapor effluent stream. The second vapor effluent stream is then washed with a liquid alcohol-containing stream to produce a third vapor effluent stream, whereafter the third vapor effluent stream is washed with liquid water to provide a fourth vapor effluent stream comprising the C2 and C3 olefins and about 1.0 wt.
    Type: Application
    Filed: June 18, 2004
    Publication date: December 22, 2005
    Inventors: Keith Kuechler, Jeffrey Brinen, Philip Ruziska
  • Publication number: 20050209469
    Abstract: The invention provides for directing an oxygenate-contaminated propylene-containing stream derived from an oxygenate to olefin reaction system to a derivative non-polymerization reactor for conversion of the propylene to one or more derivative non-polymerization products. Exemplary derivative non-polymerization propylene conversion processes include: oxidation to form acrolein, oxidation to form acrylic acid, ammoxidation to form acrylonitrile, liquid phase oxidation to form acetone, liquid phase hydration to form isopropanol, hydroformylation to form n-butyraldehyde and its subsequent aldol/hydrogenation to form 2-ethylhexanol, direct or indirect oxidation to form propylene oxide, alkylation to form cumene in the presence of phosphoric acid/Kieselguhr or a zeolite and the subsequent selective hydroperoxidation of cumene to form acetone and phenol.
    Type: Application
    Filed: March 22, 2004
    Publication date: September 22, 2005
    Inventors: John Shutt, Jeffrey Brinen
  • Publication number: 20050113623
    Abstract: A process and apparatus are provided for converting oxygenate to olefins which comprises: contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a vaporous product comprising the olefins, water and unreacted oxygenate; condensing the vaporous product to provide a liquid stream rich in the water and unreacted oxygenate, and an olefins-rich vapor stream; introducing at least part of the liquid stream to a feed tray in a fractionation tower which provides an oxygenate-rich overhead product and a water-rich liquid bottoms product; providing a liquid, oxygenate-rich stream comprising at least about 20 wt % oxygenate above the feed tray; and passing the olefins-rich vapor stream through a recovery train to recover at least some of the olefins.
    Type: Application
    Filed: November 24, 2003
    Publication date: May 26, 2005
    Inventors: Keith Kuechler, Jeffrey Brinen, James Lattner, Allen Gawlik