Patents by Inventor Jeffrey C. Benzing

Jeffrey C. Benzing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7501339
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry. The etching is timed to etch through a partial thickness of the low dielectric constant layer and the first etch chemistry is optimized to a selected low dielectric constant material. The method further includes forming a via hole in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In a specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: March 10, 2009
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 7060605
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: June 13, 2006
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6909190
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: June 21, 2005
    Assignee: Lam Research Corporation
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6528153
    Abstract: The present invention relates to porous materials, typically xerogels or aerogels, having a low dielectric constant but relatively poor mechanical strength. The present invention relates to polymeric coatings, preferably parylene, coated on inorganic xerogels or aerogels so as to increase the mechanical strength while not substantially degrading the dielectric properties of the resulting coated material. Silica xerogel conformally coated with parylene AF-4 is described.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: March 4, 2003
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey C. Benzing, John Kelly
  • Publication number: 20010010970
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 2, 2001
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Publication number: 20010009803
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Application
    Filed: February 16, 2001
    Publication date: July 26, 2001
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6251770
    Abstract: A dielectric structure and method for making a dielectric structure for dual-damascene applications over a substrate are provided. The method includes forming a barrier layer over the substrate, forming an inorganic dielectric layer over the barrier layer, and forming a low dielectric constant layer over the inorganic dielectric layer. In this preferred example, the method also includes forming a trench in the low dielectric constant layer using a first etch chemistry, and forming a via in the inorganic dielectric layer using a second etch chemistry, such that the via is within the trench. In another specific example, the inorganic dielectric layer can be an un-doped TEOS oxide or a fluorine doped oxide, and the low dielectric constant layer can be a carbon doped oxide (C-oxide) or other low K dielectrics.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: June 26, 2001
    Assignees: Lam Research Corp., Novellus Systems, Inc.
    Inventors: Jay E. Uglow, Nicolas J. Bright, Dave J. Hemker, Kenneth P. MacWilliams, Jeffrey C. Benzing, Timothy M. Archer
  • Patent number: 6225744
    Abstract: An induction plasma source for integrated circuit fabrication includes an induction coil which defines a generally convex surface. The convex surface may be in the form of a spherical section less than a hemisphere, a paraboloid, or some other smooth convex surface. The windings of the induction coil may be spaced at different intervals in different sections of the coil and may be in multiple layers in at least a portion of the coil. Varying the shape of the coil and the distribution of the coil windings allows the plasma to be shaped in a desired manner.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: May 1, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey A. Tobin, Jeffrey C. Benzing, Eliot K. Broadbent, J. Kirkwood H. Rough
  • Patent number: 6126382
    Abstract: A passive mechanism for centering a wafer on a chuck and with respect to a backside exclusion gas ring includes a plurality of wheels that are rotatably mounted in a circular pattern at the top surface of a chuck. The axis of rotation of each wheel is parallel to the top surface of the chuck and perpendicular to a radius extending outward from the centerpoint of the chuck surface. When a wafer is placed on the chuck, its edge contacts the wheels and, by its own weight, the wafer moves toward the center of the chuck, thereby centering itself. The wafer either slides on the wheels or, if the frictional force between the wafer and one or more of the wheels is great enough, the wafer causes the wheel to turn. The wheels may be mounted on the chuck, a carrier ring or a wafer transfer arm for moving wafers between processing stations. In one embodiment the alignment wheels are mounted on a carrier ring, and a second alignment mechanism aligns the carrier ring to the chuck.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: October 3, 2000
    Assignee: Novellus Systems, Inc.
    Inventors: Martin N. Scales, David A. Pechin, Jeffrey C. Benzing, R. Marshall Stowell
  • Patent number: 5925411
    Abstract: A platen supports a substrate on an interior platen region during the deposition of materials such as tungsten, metal nitrides, other metals, and silicides in a chemical vapor deposition ("CVD") reactor. A deposition control gas composed of a suitable inert gas such as argon or a mixture of inert and reactive gases such as argon and hydrogen is introduced into the CVD reactor. Deposition control gas is preferably introduced through a restrictive opening in a gas orifice surrounding the platen interior region and exits near an edge of the substrate. The restrictive opening accommodates a uniform deposition control gas flow proximate to an edge of the substrate at a pressure greater than reactor pressure near the substrate edge. The deposition control gas substantially prevents process gas access to the substrate edge and backside. In one embodiment, the restrictive opening is formed by placing a restrictive insert within a gas groove surrounding the platen interior region.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 20, 1999
    Assignee: Siliconix incorporated
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart
  • Patent number: 5901271
    Abstract: A cyclone evaporator includes an evaporator body with an evaporation chamber therein. The evaporation chamber preferably includes a thermally conductive sidewall having a generally cylindrical upper portion and a downwardly tapered lower portion. The evaporator body further includes a cover having a vapor outlet opening into the evaporation chamber and an outlet tube. The outlet tube circumscribes the vapor outlet and extends into a lower portion of the evaporation chamber. A liquid precursor passage and a carrier gas passage extend through the evaporator body and open into the evaporation chamber. In one embodiment, the carrier gas passage is positioned to direct carrier gas parallel to liquid precursor flow and intersect the liquid precursor at a liquid precursor passage outlet within the evaporation chamber. In another embodiment, the carrier gas passage is positioned to direct carrier gas across an outlet of liquid precursor passage.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: May 4, 1999
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey C. Benzing, Edward J. McInerney, Michael N. Susoeff
  • Patent number: 5882417
    Abstract: A platen supports a wafer during the deposition of tungsten, metal nitrides, other metals, and silicides in a chemicalvapor deposition reactor. A deposition control gas that includes a suitable inert gas such as argon or a mixture of inert and reactant gases such as argon and hydrogen is introduced through a restrictive opening into an ambient in the reactor. An exclusion guard aligned with the platen has an extension extending over a frontside peripheral region of the wafer. Deposition control gas is introduced under the exclusion guard extension and exits through a restrictive opening between the exclusion guard extension and a wafer frontside peripheral region. The restrictive opening provides a uniform pressure of deposition control gas at the edge and frontside of the wafer to prevent deposition on the wafer edge and backside.
    Type: Grant
    Filed: December 31, 1996
    Date of Patent: March 16, 1999
    Assignee: Novellus Systems, Inc.
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart, Lawrence C. Lane, Edward John McInerney
  • Patent number: 5843233
    Abstract: A platen supports a wafer during the deposition of tungsten, metal nitrides, other metals, and silicides in a chemical vapor deposition reactor. A deposition control gas that includes a suitable inert gas such as argon or a mixture of inert and reactant gases such as argon and hydrogen is introduced through a restrictive opening into an ambient in the reactor. An exclusion guard aligned with the platen has an extension extending over a frontside peripheral region of the wafer. Deposition control gas is introduced under the exclusion guard extension and exits through a restrictive opening between the exclusion guard extension and a wafer frontside peripheral region. The restrictive opening provides a uniform pressure of deposition control gas at the edge and frontside of the wafer to prevent deposition on the wafer edge and backside.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 1, 1998
    Assignee: Novellus Systems, Inc.
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart, Lawrence C. Lane, Edward J. McInerney
  • Patent number: 5769951
    Abstract: A platen supports a wafer during the deposition of tungsten, metal nitrides, other metals, and silicides in a chemical vapor deposition reactor. A deposition control gas that includes a suitable inert gas such as argon or a mixture of inert and reactant gases such as argon and hydrogen is introduced through a restrictive opening into an ambient in the reactor. An exclusion guard aligned with the platen has an extension extending over a frontside peripheral region of the wafer. Deposition control gas is introduced under the exclusion guard extension and exits through a restrictive opening between the exclusion guard extension and a wafer frontside peripheral region. The restrictive opening provides a uniform pressure of deposition control gas at the edge and frontside of the wafer to prevent deposition on the wafer edge and backside.
    Type: Grant
    Filed: January 17, 1996
    Date of Patent: June 23, 1998
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart, Lawrence C. Lane
  • Patent number: 5653813
    Abstract: A cyclone evaporator includes an evaporator body with an evaporation chamber therein. The evaporation chamber preferably includes a thermally conductive sidewall having a generally cylindrical upper portion and a downwardly tapered lower portion. The evaporator body further includes a cover having a vapor outlet opening into the evaporation chamber and an outlet tube. The outlet tube circumscribes the vapor outlet and extends into a lower portion of the evaporation chamber. A liquid precursor passage and a carrier gas passage extend through the evaporator body and open into the evaporation chamber. In one embodiment, the carrier gas passage is positioned to direct carrier gas parallel to liquid precursor flow and intersect the liquid precursor at a liquid precursor passage outlet within the evaporation chamber. In another embodiment, the carrier gas passage is positioned to direct carrier gas across an outlet of liquid precursor passage.
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: August 5, 1997
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey C. Benzing, Edward J. McInerney, Michael N. Susoeff
  • Patent number: 5620525
    Abstract: A platen supports a substrate on an interior platen region during the deposition of materials such as tungsten, metal nitrides, other metals, and silicides in a chemical vapor deposition ("CCVD") reactor. A deposition control gas composed of a suitable inert gas such as argon or a mixture of inert and reactive gases such as argon and hydrogen is introduced into the CVD reactor. Deposition control gas is preferably introduced through a restrictive opening in a gas orifice surrounding the platen interior region and exits near an edge of the substrate. The restrictive opening accommodates a uniform deposition control gas flow proximate to an edge of the substrate at a pressure greater than reactor pressure near the substrate edge. The deposition control gas substantially prevents process gas access to the substrate edge and backside. In one embodiment, the restrictive opening is formed by placing a restrictive insert within a gas groove surrounding the platen interior region.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: April 15, 1997
    Assignee: Novellus Systems, Inc.
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart
  • Patent number: 5605599
    Abstract: An induction plasma source for integrated circuit fabrication includes a hemispherically shaped induction coil in an expanding spiral pattern about the vacuum chamber containing a semiconductor wafer supported by a platen. The windings of the induction coil follow the contour of a hemispherically shaped quartz bell jar, which holds the vacuum. The power source is a low frequency rf source having a frequency of about 450 KHz and a power in the range of 200-2000 Watts, and the pressure is a low pressure of about 0.1-100 mTorr. A high frequency rf source independently adjusts the bias voltage on the wafer.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: February 25, 1997
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey C. Benzing, Eliot K. Broadbent, J. Kirkwood H. Rough
  • Patent number: 5578532
    Abstract: A process comprising a platen having a substrate contact supporting a substrate during the deposition of tungsten, metal nitrides, other metals, and silicides in a chemical vapor deposition reactor. A deposition control gas composed of a suitable inert gas such as argon or a mixture of inert and reactant gases such as argon and hydrogen is introduced through a restrictive opening into an ambient in the reactor. An exclusion guard is positioned adjacent to the substrate contact and has an extension extending over a frontside peripheral region of the substrate. Deposition control gas is introduced through an opening beneath the exclusion guard extension and exits through a restrictive opening between the exclusion guard extension and a substrate frontside peripheral region. The restrictive opening provides a uniform deposition control gas flow at a pressure greater than reactor ambient pressure and process gas pressure impinging on the frontside of the substrate.
    Type: Grant
    Filed: August 23, 1994
    Date of Patent: November 26, 1996
    Assignee: Novellus Systems, Inc.
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart
  • Patent number: 5405480
    Abstract: An induction plasma source for integrated circuit fabrication includes a hemispherically shaped induction coil in an expanding spiral pattern about the vacuum chamber containing a semiconductor wafer supported by a platen. The windings of the induction coil follow the contour of a hemispherically shaped quartz bell jar, which holds the vacuum. The power source is a low frequency rf source having a frequency of about 450 KHz and a power in the range of 200-2000 watts, and the pressure is a low pressure of about 0.1-100 mTorr. A high frequency rf source independently adjusts the bias voltage on the wafer.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: April 11, 1995
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey C. Benzing, Eliot K. Broadbent, J. Kirkwood H. Rough
  • Patent number: 5374594
    Abstract: A suitable inert gas such as argon or a mixture of inert and reactive gases such as argon and hydrogen is introduced onto the backside of wafers being processed in a CVD reactor during the deposition of tungsten or other metals, metal nitrides and silicides, to avoid deposition of material on the backside of the wafers being processed. Each process station includes a gas dispersion head disposed over a platen. A vacuum chuck including a number of radial and circular vacuum grooves in the top surface of the platen is provided for holding the wafer in place. A platen heater is provided under the platen. Backside gas is heated in and about the bottom of the platen, and introduced through a circular groove in the peripheral region outside of the outermost vacuum groove of the vacuum chuck. Backside gas pressure is maintained in this peripheral region at a level greater than the CVD chamber pressure.
    Type: Grant
    Filed: January 22, 1993
    Date of Patent: December 20, 1994
    Assignee: Novellus Systems, Inc.
    Inventors: Everhardus P. van de Ven, Eliot K. Broadbent, Jeffrey C. Benzing, Barry L. Chin, Christopher W. Burkhart