Patents by Inventor Jeffrey C. Kelly

Jeffrey C. Kelly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126804
    Abstract: A method at a client device includes displaying media library information corresponding to a set of media items. The media items include one or more local media items, the one or more local media items including media items stored at the client device, and one or more remote media items, the one or more remote media items including media items stored at a remote system and not at the client device. The method also includes displaying, concurrently with displaying the media library information, affordances identifying the remote media items; detecting user interaction with an affordance identifying a respective remote media item; and in response to detecting the user interaction, initiating a process for downloading a copy of the respective remote media item to the client device for storage at the client device.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Christopher John SANDERS, Thomas M. ALSINA, Imran CHAUDHRI, Patrice O. GAUTIER, Sean Boland KELLY, Timothy B. MARTIN, Lucas C. NEWMAN, Jeffrey L. ROBBIN, Andrew M. WADYCKI
  • Patent number: 8795364
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: August 5, 2014
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Gino Bradica, Jeffrey C. Kelly, Michael K. Carouge
  • Patent number: 8758351
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: June 24, 2014
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Gino Bradica, Michael K. Carouge, Brian Oeffinger
  • Publication number: 20120191130
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Application
    Filed: February 14, 2012
    Publication date: July 26, 2012
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Gino Bradica, Michael K. Carouge, Brian Oeffinger
  • Patent number: 8114161
    Abstract: A system for repairing a vertebral disc defect, such as hernia or bulge, a full or partial tear in the annulus, or a weakened annulus wall as a result of an excision procedure. The system introduces a treatment device arranged to repair the defect, and may prevent the leakage of fluid from the nucleus. The components of the device may be resorbable materials, and may induce the ingrowth of cellular material into the components. The system may feature a locating device to ensure proper placement of the treatment device.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: February 14, 2012
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Gino Bradica, Michael K. Carouge, Brian Oeffinger
  • Patent number: 7049348
    Abstract: Devices and processes (e.g., improved Plasticized Melt Flow processes (PMF) or improved Phase Separation Polymer Concentration (PSPC), etc.) used to make resorbable and non-resorbable structures for treating and/or healing of tissue defects are disclosed. Among the advantages of using these improved processes are the preservation of molecular weight and the broadening of the processing conditions for temperature sensitive polymers and therapies This reduction in processing temperature, pressure and time can help to preserve the molecular weight and/or integrity of the final product or any additive incorporated therein. The present invention relates to an improved porous implant wherein the pores of the implant present a second modeling material on their surfaces. This second material provides a textured or roughened face to the internal surfaces of pores.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: May 23, 2006
    Assignee: Kensey Nash Corporation
    Inventors: Douglas G Evans, Jeffrey C Kelly, Todd M DeWitt
  • Publication number: 20040010048
    Abstract: Devices and processes (e.g., improved Plasticized Melt Flow processes (PMF) or improved Phase Separation Polymer Concentration (PSPC), etc.) used to make resorbable and non-resorbable structures for treating and/or healing of tissue defects are disclosed. Among the advantages of using these improved processes are the preservation of molecular weight and the broadening of the processing conditions for temperature sensitive polymers and therapies This reduction in processing temperature, pressure and time can help to preserve the molecular weight and/or integrity of the final product or any additive incorporated therein. The present invention relates to an improved porous implant wherein the pores of the implant present a second modeling material on their surfaces. This second material provides a textured or roughened face to the internal surfaces of pores.
    Type: Application
    Filed: August 15, 2002
    Publication date: January 15, 2004
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Todd M. DeWitt
  • Publication number: 20040006146
    Abstract: Devices and processes (e.g., improved Plasticized Melt Flow processes (PMF) or improved Phase Separation Polymer Concentration (PSPC), etc.) used to make resorbable and non-resorbable structures for treating and/or healing of tissue defects are disclosed. Among the advantages of using these improved processes are the preservation of molecular weight and the broadening of the processing conditions for temperature sensitive polymers and therapies (e.g. polylactide, polyglycolide, polycaprolactone or Cisplatin, etc.). This reduction in processing temperature, pressure and time can help to preserve the molecular weight and/or integrity of the final product or any additive incorporated therein. Additionally, pore size and shape tailoring can increase the osteoconductive nature of the device.
    Type: Application
    Filed: July 6, 2002
    Publication date: January 8, 2004
    Inventors: Douglas G. Evans, Jeffrey C. Kelly, Todd M. DeWitt
  • Patent number: 6183232
    Abstract: A raw material delivery system is disclosed. It is used with a press of the type used to compact raw material in a die. The press has a horizontal table with an opening in which the die is held. A feed shoe is movable across the table between an extended position where a central bore of the feed shoe overlies the die and a retracted position. In one embodiment, a vertically movable feed tube is carried on a bridge, and has a passage through which raw material may pass. The vertically movable feed tube receives raw material from a vertically fixed feed tube received telescopically within the vertically movable feed tube. A valve is between the two feed tubes. A valve may be provided between the bridge and the feed shoe so that the raw material passes through this interface without being exposed to cross-ventilation.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: February 6, 2001
    Assignee: AMSTED Industries Incorporated
    Inventors: Todd A. Bequette, Jeffrey C. Kelly, Thomas J. Krave, Robert S. Porter, Michael J. Dorband, Mark W. Green
  • Patent number: 5858415
    Abstract: A raw material delivery system is disclosed. It is used with a press of the type used to compact raw material in a die. The press has a horizontal table with an opening in which the die is held. A feed shoe is movable across the table between an extended position where a central bore of the feed shoe overlies the die and a retracted position where the central bore is aligned with a bore in a bridge. A vertically movable feed tube is carried on the bridge, and has a passage through which raw material may pass. The vertically movable feed tube receives raw material from a vertically fixed feed tube received telescopically within the vertically movable feed tube. A valve is between the two feed tubes. A valve may be provided between the bridge and the feed shoe so that the raw material passes through this interface without being exposed to cross-ventilation.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: January 12, 1999
    Assignee: Amsted Industries Incorporated
    Inventors: Todd A. Bequette, Jeffrey C. Kelly, Thomas J. Krave, Robert S. Porter, Michael J. Dorband, Mark W. Green
  • Patent number: 5858556
    Abstract: A multilayer composite tubular structure for use as a stent in surgical procedures has an outer layer of biocompatible material, a middle layer of radiopaque material, and an inner layer of biocompatible material. The layers are metallurgically bonded, to form a composite stent which is ductile and permits large deformation without delamination between the biocompatible and radiopaque layers. The composite structure formed is visible on a fluoroscope, yet does not obstruct the details of the stent itself, or of the anatomical features surrounding the stent.A process of forming a multilayer composite tubular structure is also disclosed. A tube formed from radiopaque material is coaxially surrounded by a tube of biocompatible material. The tubes are simultaneously reduced, such as by tube drawing, swaging, or deep drawing, until a composite structure of a desirable diameter and wall thickness is formed. The tubes are then heat treated to cause diffusion bonding of the biocompatible and radiopaque layers.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: January 12, 1999
    Assignee: UTI Corporation
    Inventors: John K. Eckert, Jeffrey M. Farina, Joseph P. Gadda, Jeffrey C. Kelly, John G. Thomas