Patents by Inventor Jeffrey Chard

Jeffrey Chard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9127927
    Abstract: Provided are optimized scatterometry techniques for evaluating a diffracting structure. In one embodiment, a method includes computing a finite-difference derivative of a field matrix with respect to first parameters (including a geometric parameter of the diffracting structure), computing an analytic derivative of the Jones matrix with respect to the field matrix, computing a derivative of the Jones matrix with respect to the first parameters, and computing a finite-difference derivative of the Jones matrix with respect to second parameters (including a non-geometric parameter). In one embodiment, a method includes generating a transfer matrix having Taylor Series approximations for elements, and decomposing the field matrix into two or more smaller matrices based on symmetry between the incident light and the diffracting structure.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: September 8, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Jonathan Iloreta, Paul Aoyagi, Hanyou Chu, Jeffrey Chard, Peilin Jiang, Mikhail Sushchik, Leonid Poslavsky, Philip D. Flanner, III
  • Publication number: 20130158948
    Abstract: Provided are optimized scatterometry techniques for evaluating a diffracting structure. In one embodiment, a method includes computing a finite-difference derivative of a field matrix with respect to first parameters (including a geometric parameter of the diffracting structure), computing an analytic derivative of the Jones matrix with respect to the field matrix, computing a derivative of the Jones matrix with respect to the first parameters, and computing a finite-difference derivative of the Jones matrix with respect to second parameters (including a non-geometric parameter). In one embodiment, a method includes generating a transfer matrix having Taylor Series approximations for elements, and decomposing the field matrix into two or more smaller matrices based on symmetry between the incident light and the diffracting structure.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 20, 2013
    Inventors: Jonathan Iloreta, Paul Aoyagi, Hanyou Chu, Jeffrey Chard, Peilin Jiang, Mikhail Sushchik, Leonid Poslavsky, Phillip D. Flanner, III
  • Publication number: 20080170241
    Abstract: A process step in fabricating a structure on a wafer in a wafer application having one or more process steps and one or more process parameters is controlled by determining a correlation between a set of profile models and one or more key profile shape variables. Each profile model is defined using a set of profile parameters to characterize the shape of the structure. Different sets of profile parameters define the profile models in the set. The one or more key profile shape variables include one or more profile parameters or one or more process parameters. One profile model is selected from the set of profile models based on the correlation and a value of at least one key profile shape variable of the process of the wafer application to be used in fabricating the structure. The structure is fabricated in a first fabrication process cluster using the process step and the value of the at least one key profile shape variable. A measured diffraction signal is obtained off the structure.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey Chard, Junwei Bao, Manuel Madriaga
  • Publication number: 20080170242
    Abstract: One or more profile parameters of a structure fabricated on a wafer in a wafer application are determined by developing a correlation between a set of profile models and one or more key profile shape variables. The wafer application has one or more process steps and one or more process parameters. Each profile model is defined using a set of profile parameters to characterize the shape of the structure. Different sets of profile parameters define the profile models in the set. The one or more key profile shape variables include one or more profile parameters or one or more process parameters. A value of at least one key profile shape variable of the process step of the wafer application to be used in fabricating the structure is determined. One profile model is selected from the set of profile models based on the determined correlation and the value of the at least one determined key profile shape variable.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 17, 2008
    Applicant: Tokyo Electron Limited
    Inventors: Jeffrey Chard, Junwei Bao